If [tex]$F(x)=9x$[/tex], which of the following is the inverse of [tex]$F(x)$[/tex]?

A. [tex]$F^{-1}(x)=\frac{x}{9}$[/tex]

B. [tex][tex]$F^{-1}(x)=x+9$[/tex][/tex]

C. [tex]$F^{-1}(x)=x-9$[/tex]

D. [tex]$F^{-1}(x)=\frac{1}{9}$[/tex]



Answer :

To determine the inverse of the function [tex]\( F(x) = 9x \)[/tex], let’s follow the systematic steps to find the inverse.

1. Set the function equal to [tex]\( y \)[/tex]:
[tex]\[ y = 9x \][/tex]

2. Solve for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
To isolate [tex]\( x \)[/tex], we need to divide both sides of the equation by 9:
[tex]\[ x = \frac{y}{9} \][/tex]

3. Express the inverse function:
Since the inverse function, denoted as [tex]\( F^{-1}(x) \)[/tex], switches the roles of [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] in the equation:
[tex]\[ F^{-1}(x) = \frac{x}{9} \][/tex]

Therefore, the inverse of the function [tex]\( F(x) = 9x \)[/tex] is [tex]\( F^{-1}(x) = \frac{x}{9} \)[/tex].

Hence, the correct answer is:
A. [tex]\( F^{-1}(x) = \frac{x}{9} \)[/tex]