This question has multiple parts. Work all the parts to get the most points.

Several acids are listed here with their respective equilibrium constants:

[tex]\[
\begin{array}{l}
C_6 H_5 OH (aq) + H_2 O (\ell) \rightleftarrows H_3 O^+ (aq) + C_6 H_5 O^- (aq) \\
K_a = 1.3 \times 10^{-10} \\
HCO_2 H (aq) + H_2 O (\ell) \rightleftarrows H_3 O^+ (aq) + HCO_2^- (aq) \\
K_a = 1.8 \times 10^{-4} \\
HC_2 O_4^- (aq) + H_2 O (\ell) \rightleftarrows H_3 O^+ (aq) + C_2 O_4^{2-} (aq) \\
K_a = 6.4 \times 10^{-5}
\end{array}
\][/tex]

a. Rank these acids according to acid strength, from weakest to strongest.

Drag and drop your selection from the following list to complete the answer:

[tex]\[ C_6 H_5 OH \][/tex]

[tex]\[ HC_2 O_4^- \][/tex]

[tex]\[ HCO_2 H \][/tex]



Answer :

To rank the acids according to their acid strength, we need to compare their equilibrium constants (Ka values). The acid with the smallest Ka value is the weakest acid (it dissociates the least in solution), while the acid with the largest Ka value is the strongest acid (it dissociates the most in solution).

Here are the given acids and their Ka values:

1. [tex]\( C_6H_5OH \)[/tex]: [tex]\[ K_{a} = 1.3 \times 10^{-10} \][/tex]
2. [tex]\( HCO_2H \)[/tex]: [tex]\[ K_{a} = 1.8 \times 10^{-4} \][/tex]
3. [tex]\( HC_2O_4^- \)[/tex]: [tex]\[ K_{a} = 6.4 \times 10^{-5} \][/tex]

Let's compare these values:
- [tex]\( 1.3 \times 10^{-10} \)[/tex] (for [tex]\( C_6H_5OH \)[/tex]) is the smallest value.
- [tex]\( 6.4 \times 10^{-5} \)[/tex] (for [tex]\( HC_2O_4^- \)[/tex]) is larger than [tex]\( 1.3 \times 10^{-10} \)[/tex] but smaller than [tex]\( 1.8 \times 10^{-4} \)[/tex].
- [tex]\( 1.8 \times 10^{-4} \)[/tex] (for [tex]\( HCO_2H \)[/tex]) is the largest value.

Therefore, the ranking from weakest to strongest acid based on the Ka values is:

[tex]\[ C_6H_5OH < HC_2O_4 < HCO_2H \][/tex]

So the order from weakest to strongest acid is:
[tex]\[ C _6 H _5 OH, \, HC _2 O _4, \, HCO _2 H \][/tex]