Select the correct answer.

Using synthetic division, what is the quotient of this expression?

[tex]\[
\frac{2x^2 + 5x - 7}{x - 2}
\][/tex]

A. [tex]\(2x - 5\)[/tex]
B. [tex]\(2x + 9 + \frac{11}{x - 2}\)[/tex]
C. [tex]\(2x + 7\)[/tex]
D. [tex]\(2x + 1 - \frac{5}{x - 2}\)[/tex]



Answer :

To solve the problem using synthetic division, we'll follow a step-by-step approach to divide the polynomial [tex]\(2x^2 + 5x - 7\)[/tex] by [tex]\(x-2\)[/tex].

Step 1: Set up the synthetic division.

We'll use the zeros of [tex]\(x-2\)[/tex], which is [tex]\(2\)[/tex]. Set up the coefficients of the polynomial: [tex]\(2, 5, -7\)[/tex].

Write down the coefficients:
[tex]\[ \begin{array}{r|rrr} 2 & 2 & 5 & -7 \\ \end{array} \][/tex]

Step 2: Perform the synthetic division.

1. Bring down the leading coefficient [tex]\(2\)[/tex].
[tex]\[ \begin{array}{r|rrr} 2 & 2 & 5 & -7 \\ & & & \\ & 2 & & \\ \end{array} \][/tex]

2. Multiply [tex]\(2\)[/tex] by the leading coefficient of [tex]\(x-2\)[/tex], which is [tex]\(2\)[/tex], and place it under the next coefficient:
[tex]\[ \begin{array}{r|rrr} 2 & 2 & 5 & -7 \\ & & 4 & \\ & 2 & & \\ \end{array} \][/tex]

3. Add the values in the second column: [tex]\(5 + 4 = 9\)[/tex].
[tex]\[ \begin{array}{r|rrr} 2 & 2 & 5 & -7 \\ & & 4 & 18 \\ & 2 & 9 & \\ \end{array} \][/tex]

4. Repeat the multiplication and addition with the last coefficient.
[tex]\[ \begin{array}{r|rrr} 2 & 2 & 5 & -7 \\ & & 4 & 18 \\ & 2 & 9 & 11 \\ \end{array} \][/tex]

We performed [tex]\(2 \times 9\)[/tex] and placed it below the remaining coefficients, then added up [tex]\( -7 + 18 = 11\)[/tex].

Step 3: Interpret the result.

Our quotient from the synthetic division is [tex]\(2x + 9\)[/tex] and the remainder is [tex]\(11\)[/tex].

Final Answer:

The quotient is [tex]\(\boxed{2x + 9 + \frac{11}{x-2}}.\)[/tex]

Therefore, the correct answer is:
[tex]\[ \text{B. } 2 x + 9 + \frac{11}{x - 2} \][/tex]