Which expression is equivalent to [tex]\cos 120^{\circ}[/tex]?

A. [tex]\cos 60^{\circ}[/tex]
B. [tex]\cos 240^{\circ}[/tex]
C. [tex]\cos 300^{\circ}[/tex]
D. [tex]\cos 420^{\circ}[/tex]



Answer :

To determine which expression is equivalent to [tex]\(\cos 120^\circ\)[/tex], let's first understand the values of the cosine function at each of the given angles.

1. [tex]\(\cos 120^\circ\)[/tex]:
[tex]\[ \cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2} \][/tex]

2. [tex]\(\cos 60^\circ\)[/tex]:
[tex]\[ \cos 60^\circ = \frac{1}{2} \][/tex]

3. [tex]\(\cos 240^\circ\)[/tex]:
[tex]\[ \cos 240^\circ = \cos (180^\circ + 60^\circ) = -\cos 60^\circ = -\frac{1}{2} \][/tex]

4. [tex]\(\cos 300^\circ\)[/tex]:
[tex]\[ \cos 300^\circ = \cos (360^\circ - 60^\circ) = \cos 60^\circ = \frac{1}{2} \][/tex]

5. [tex]\(\cos 420^\circ\)[/tex]:
[tex]\[ \cos 420^\circ = \cos (360^\circ + 60^\circ) = \cos 60^\circ = \frac{1}{2} \][/tex]

From these calculations, we observe that:
- [tex]\(\cos 120^\circ = -\frac{1}{2}\)[/tex]
- [tex]\(\cos 60^\circ = \frac{1}{2}\)[/tex]
- [tex]\(\cos 240^\circ = -\frac{1}{2}\)[/tex]
- [tex]\(\cos 300^\circ = \frac{1}{2}\)[/tex]
- [tex]\(\cos 420^\circ = \frac{1}{2}\)[/tex]

Thus, the expression that is equivalent to [tex]\(\cos 120^\circ\)[/tex] is:
[tex]\[ \cos 240^\circ \][/tex]