What is the [tex]$y$[/tex]-coordinate of point [tex]$D$[/tex] after a translation of [tex]$(x, y) \rightarrow (x+6, y-4)$[/tex]?

If the original coordinates of [tex]$D$[/tex] are [tex]$(3.5, y)$[/tex], what is the new [tex]$y$[/tex]-coordinate after the translation?



Answer :

To determine the [tex]$y$[/tex]-coordinate of point [tex]$D$[/tex] after the given translation, follow these steps:

1. Identify the initial [tex]$y$[/tex]-coordinate for point [tex]$D$[/tex]. In this case, it is given as [tex]$3.5$[/tex].

2. Note the translation vector specified: [tex]$(x, y) \rightarrow (x + 6, y - 4)$[/tex]. This means we are translating the point by moving it 6 units to the right (affecting the [tex]$x$[/tex]-coordinate) and 4 units down (affecting the [tex]$y$[/tex]-coordinate).

3. Focus on the change in the [tex]$y$[/tex]-coordinate. The translation moves the [tex]$y$[/tex]-coordinate down by 4 units.

4. Subtract 4 from the initial [tex]$y$[/tex]-coordinate:
[tex]\[ y_{final} = y_{initial} - 4 \][/tex]
[tex]\[ y_{final} = 3.5 - 4 \][/tex]

5. Calculate the result:
[tex]\[ 3.5 - 4 = -0.5 \][/tex]

Thus, the [tex]$y$[/tex]-coordinate of point [tex]$D$[/tex] after the translation is [tex]$-0.5$[/tex].