The table represents a function.

\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$f(x)$[/tex] \\
\hline -5 & 4 \\
\hline -1 & 0 \\
\hline 6 & -1 \\
\hline 9 & -3 \\
\hline
\end{tabular}

What is the value of [tex]$f(-1)$[/tex]?

A. [tex]$f(-1) = -3$[/tex]

B. [tex]$f(-1) = -1$[/tex]

C. [tex]$f(-1) = 0$[/tex]

D. [tex]$f(-1) = 6$[/tex]



Answer :

To determine the value of [tex]\( f(-1) \)[/tex] from the given table, we need to locate the [tex]\( y \)[/tex]-value that corresponds to [tex]\( x = -1 \)[/tex]. Let's carefully examine each pair of [tex]\( (x, f(x)) \)[/tex] in the table:

[tex]\[ \begin{tabular}{|c|c|} \hline $x$ & $f(x)$ \\ \hline -5 & 4 \\ \hline -1 & 0 \\ \hline 6 & -1 \\ \hline 9 & -3 \\ \hline \end{tabular} \][/tex]

We find [tex]\( x = -1 \)[/tex] in the second row of the table. Looking at the corresponding [tex]\( f(x) \)[/tex] value in this row, we see that [tex]\( f(-1) = 0 \)[/tex].

Thus, the value of [tex]\( f(-1) \)[/tex] is:
[tex]\[ f(-1) = 0 \][/tex]

Therefore, the correct answer is:
[tex]\( f(-1) = 0 \)[/tex].