Which expression is equivalent to [tex]\left(4 y^2\right)^3\left(3 y^2\right)[/tex]?

A. [tex]12 y^8[/tex]
B. [tex]12 y^{12}[/tex]
C. [tex]192 y^8[/tex]
D. [tex]192 y^{12}[/tex]



Answer :

To solve the problem of finding which expression is equivalent to [tex]\(\left(4 y^2\right)^3 \left(3 y^2\right)\)[/tex], let's go through the steps for simplifying the given expression.

1. Simplify [tex]\(\left(4 y^2\right)^3\)[/tex]:
[tex]\[ \left(4 y^2\right)^3 = 4^3 \cdot (y^2)^3 \][/tex]
We know that [tex]\(a^3 = a \cdot a \cdot a\)[/tex], so:
[tex]\[ 4^3 = 64 \][/tex]
Also, [tex]\((y^2)^3 = y^{2 \cdot 3} = y^6\)[/tex]:
[tex]\[ \left(4 y^2\right)^3 = 64 y^6 \][/tex]

2. Multiply the result by [tex]\(3 y^2\)[/tex]:
[tex]\[ (64 y^6) \cdot (3 y^2) \][/tex]

Combine the coefficients (numeric parts):
[tex]\[ 64 \cdot 3 = 192 \][/tex]

Combine the variables with exponents using the property of exponents [tex]\(a^m \cdot a^n = a^{m+n}\)[/tex]:
[tex]\[ y^6 \cdot y^2 = y^{6+2} = y^8 \][/tex]

3. Put everything together:
[tex]\[ 192 y^8 \][/tex]

Thus, the expression that is equivalent to [tex]\(\left(4 y^2\right)^3 \left(3 y^2\right)\)[/tex] is:
[tex]\[ \boxed{192 y^8} \][/tex]