Simplify and express the answer using positive exponents only. Variables are restricted to avoid division by 0.

[tex]\[
\left(7 a^{-5}\right)^2
\][/tex]

[tex]\[
\left(7 a^{-5}\right)^2 = \square
\][/tex]

(Use positive exponents only.)



Answer :

Sure, let's simplify the given expression step-by-step.

The expression given is:
[tex]\[ \left(7 a^{-5}\right)^2 \][/tex]

1. Distribute the power of 2 to both the coefficient and the variable:

[tex]\[ \left(7\right)^2 \cdot \left(a^{-5}\right)^2 \][/tex]

2. Calculate the coefficient term:

[tex]\[ (7)^2 = 49 \][/tex]

3. Simplify the exponent on the variable:

When you raise a power to another power, you multiply the exponents. So for [tex]\(a^{-5}\)[/tex] raised to the power of 2,
[tex]\[ \left(a^{-5}\right)^2 = a^{-5 \times 2} = a^{-10} \][/tex]

4. Combine these results:

[tex]\[ \left(7 a^{-5}\right)^2 = 49 \cdot a^{-10} \][/tex]

5. Rewrite using positive exponents:

A negative exponent [tex]\(a^{-10}\)[/tex] can be rewritten as the reciprocal with a positive exponent:
[tex]\[ a^{-10} = \frac{1}{a^{10}} \][/tex]

Therefore, the final simplified expression using positive exponents is:
[tex]\[ 49 \cdot \frac{1}{a^{10}} = \frac{49}{a^{10}} \][/tex]

So the simplified expression is:
[tex]\[ \left(7 a^{-5}\right)^2 = \frac{49}{a^{10}} \][/tex]