Write the expression in radical form and then evaluate.

[tex]\[ 16^{5/2} \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice:

A. [tex]\[ 16^{5/2} = \square \][/tex] (Simplify your answer.)
B. The answer is not a real number.



Answer :

To solve the expression [tex]\( 16^{5 / 2} \)[/tex], let's break down the steps in detail:

1. First, we need to understand that [tex]\( 16^{5 / 2} \)[/tex] can be rewritten in radical form. The general rule for rewriting an expression with a fractional exponent [tex]\( a^{b/c} \)[/tex] is:
[tex]\[ a^{b/c} = (a^{1/c})^b \][/tex]

2. Apply this rule to the given expression. Here, [tex]\( a = 16 \)[/tex], [tex]\( b = 5 \)[/tex], and [tex]\( c = 2 \)[/tex]:
[tex]\[ 16^{5 / 2} = (16^{1/2})^5 \][/tex]

3. Now, [tex]\( 16^{1/2} \)[/tex] is the square root of 16. The square root of 16 is 4:
[tex]\[ 16^{1/2} = \sqrt{16} = 4 \][/tex]

4. Substitute [tex]\(\sqrt{16}\)[/tex] with 4 in the expression:
[tex]\[ (16^{1/2})^5 = 4^5 \][/tex]

5. Now, calculate [tex]\( 4^5 \)[/tex]:
[tex]\[ 4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024 \][/tex]

So, in radical form, the expression [tex]\( 16^{5 / 2} \)[/tex] becomes [tex]\( 4^5 \)[/tex], and its evaluated numerical value is 1024.

Therefore, the correct choice is:

A. [tex]\( 16^{5 / 2} = 4^5 \text{ and the simplified result is } 1024 \)[/tex]