Solve the equation:
[tex]\[ 2y^2 - 5y = 1 \][/tex]

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

A. The solution(s) is/are [tex]\( y = \)[/tex] [tex]\(\square\)[/tex].
(Type an exact answer, using radicals as needed. Use a comma to separate answers as needed.)

B. There is no solution.



Answer :

Sure, let's solve the given equation step-by-step.

We start with the quadratic equation:
[tex]\[ 2y^2 - 5y = 1 \][/tex]

To solve it, we first move all terms to one side to set the equation to zero:
[tex]\[ 2y^2 - 5y - 1 = 0 \][/tex]

This is now in the standard form of a quadratic equation [tex]\(ay^2 + by + c = 0\)[/tex], where [tex]\(a = 2\)[/tex], [tex]\(b = -5\)[/tex], and [tex]\(c = -1\)[/tex].

We can solve this quadratic equation using the quadratic formula:
[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

Plugging in the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex], we get:
[tex]\[ y = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \cdot 2 \cdot (-1)}}{2 \cdot 2} \][/tex]

Simplifying the expression inside the square root:
[tex]\[ y = \frac{5 \pm \sqrt{25 + 8}}{4} \][/tex]
[tex]\[ y = \frac{5 \pm \sqrt{33}}{4} \][/tex]

So, the solutions are:
[tex]\[ y = \frac{5 - \sqrt{33}}{4} \][/tex]
[tex]\[ y = \frac{5 + \sqrt{33}}{4} \][/tex]

Therefore, the correct choice is:
A. The solution(s) is/are
[tex]\[ y = \frac{5 - \sqrt{33}}{4}, \frac{5 + \sqrt{33}}{4} \][/tex]

These are the exact solutions using radicals as needed.