Simplify and express answers using positive exponents only. Variables are restricted to avoid division by 0.

[tex]\left(6 a^{-5}\right)^3[/tex]

[tex]\left(6 a^{-5}\right)^3 = \square[/tex] (Use positive exponents only.)



Answer :

To simplify the expression [tex]\(\left(6 a^{-5}\right)^3\)[/tex] and express the answer using positive exponents only, follow these steps:

1. Expand the expression inside the parentheses:
[tex]\[ (6 a^{-5})^3 \][/tex]

2. Use the property of exponents [tex]\((x \cdot y)^n = x^n \cdot y^n\)[/tex]:
[tex]\[ (6 a^{-5})^3 = 6^3 \cdot (a^{-5})^3 \][/tex]

3. Calculate the power of 6:
[tex]\[ 6^3 = 6 \cdot 6 \cdot 6 = 216 \][/tex]

4. Apply the power rule to the variable term [tex]\((a^{-5})^3\)[/tex]:
[tex]\[ (a^{-5})^3 = a^{-5 \cdot 3} = a^{-15} \][/tex]

5. Combine the results:
[tex]\[ 6^3 \cdot (a^{-5})^3 = 216 \cdot a^{-15} \][/tex]

6. Express the term with a positive exponent by using the reciprocal property [tex]\(a^{-n} = \frac{1}{a^n}\)[/tex]:
[tex]\[ 216 \cdot a^{-15} = \frac{216}{a^{15}} \][/tex]

Thus, the simplified expression [tex]\(\left(6 a^{-5}\right)^3\)[/tex] with positive exponents only is:
[tex]\[ \frac{216}{a^{15}} \][/tex]