The table represents a linear function.
\begin{tabular}{|c|c|}
\hline [tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline -2 & 8 \\
\hline -1 & 2 \\
\hline 0 & -4 \\
\hline 1 & -10 \\
\hline 2 & -16 \\
\hline
\end{tabular}

What is the slope of the function?

A. [tex]$-6$[/tex]
B. [tex]$-4$[/tex]
C. 4
D. 6



Answer :

To determine the slope of the linear function given by the table of values, we follow these steps:

1. Identify two points from the table:
We can select any two points to calculate the slope. For simplicity, let's choose the first two points:
- Point 1: [tex]\((-2, 8)\)[/tex]
- Point 2: [tex]\((-1, 2)\)[/tex]

2. Calculate the change in [tex]\(y\)[/tex] values ([tex]\(\Delta y\)[/tex]):
[tex]\[ \Delta y = y_2 - y_1 = 2 - 8 = -6 \][/tex]

3. Calculate the change in [tex]\(x\)[/tex] values ([tex]\(\Delta x\)[/tex]):
[tex]\[ \Delta x = x_2 - x_1 = -1 - (-2) = -1 + 2 = 1 \][/tex]

4. Calculate the slope ([tex]\(m\)[/tex]):
The slope of a linear function is given by the ratio of the change in [tex]\(y\)[/tex] to the change in [tex]\(x\)[/tex]:
[tex]\[ m = \frac{\Delta y}{\Delta x} = \frac{-6}{1} = -6 \][/tex]

Thus, the slope of the function is [tex]\(-6\)[/tex].

Given the options:
- [tex]\(-6\)[/tex]
- [tex]\(-4\)[/tex]
- 4
- 6

The correct answer is [tex]\(-6\)[/tex].

So the correct choice to mark is:

[tex]\[ \boxed{-6} \][/tex]