Darlene wrote this proof of the identity [tex]$(x+y)^2-(x-y)^2=4xy$[/tex]. Which of the following is a justification for Step 5 of her proof?

Step 1: [tex]$(x+y)^2-(x-y)^2=(x+y)(x+y)-(x-y)(x-y)$[/tex]

Step 2: [tex]$(x+y)(x+y)-(x-y)(x-y)=\left(x^2+xy+xy+y^2\right)-\left(x^2-xy-xy+y^2\right)$[/tex]

Step 3: [tex]\left(x^2+xy+xy+y^2\right)-\left(x^2-xy-xy+y^2\right)=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)$[/tex]

Step 4: [tex]\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)=x^2+2xy+y^2-x^2+2xy-y^2$[/tex]

Step 5: [tex][tex]$x^2+2xy+y^2-x^2+2xy-y^2=4xy$[/tex][/tex]

A. Distributive property

B. Combining like terms

C. Reflexive property

D. Definition of squaring a binomial



Answer :

Let's analyze each step in the given proof to understand the justification for Step 5.

### Step-by-Step Analysis

Step 1:
[tex]\[ (x+y)^2 - (x-y)^2 = (x+y)(x+y) - (x-y)(x-y) \][/tex]
This step rewrites the squares as products of binomials.

Step 2:
[tex]\[ (x+y)(x+y) - (x-y)(x-y) = \left(x^2 + xy + xy + y^2\right) - \left(x^2 - xy - xy + y^2\right) \][/tex]
This step expands the binomials using the distributive property (or FOIL method).

Step 3:
[tex]\[ \left(x^2 + xy + xy + y^2\right) - \left(x^2 - xy - xy + y^2\right) = \left(x^2 + 2xy + y^2\right) - \left(x^2 - 2xy + y^2\right) \][/tex]
This step simplifies the expressions inside the parentheses by combining like terms.

Step 4:
[tex]\[ \left(x^2 + 2xy + y^2\right) - \left(x^2 - 2xy + y^2\right) = x^2 + 2xy + y^2 - x^2 + 2xy - y^2 \][/tex]
This step distributes the subtraction over each term inside the parentheses.

Step 5:
[tex]\[ x^2 + 2xy + y^2 - x^2 + 2xy - y^2 = 4xy \][/tex]
In this step, we observe that [tex]\(x^2\)[/tex] cancels out with [tex]\(-x^2\)[/tex] and [tex]\(y^2\)[/tex] cancels out with [tex]\(-y^2\)[/tex]. What remains is [tex]\(2xy + 2xy = 4xy\)[/tex].

The justification for this step is combining like terms, as we combined [tex]\(2xy\)[/tex] and [tex]\(2xy\)[/tex] to get [tex]\(4xy\)[/tex].

### Conclusion
The appropriate justification for Step 5 of Darlene's proof is:

B. Combining like terms