Line GH contains points [tex]G (-2, 6)[/tex] and [tex]H (5, -3)[/tex]. What is the slope of [tex]\overleftrightarrow{GH}[/tex]?

A. [tex]-\frac{7}{3}[/tex]
B. [tex]-\frac{9}{7}[/tex]
C. [tex]-\frac{7}{9}[/tex]
D. [tex]-\frac{3}{7}[/tex]



Answer :

To find the slope of the line passing through points [tex]\( G(-2, 6) \)[/tex] and [tex]\( H(5, -3) \)[/tex], we use the slope formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]

Here, [tex]\((x_1, y_1) = (-2, 6)\)[/tex] and [tex]\((x_2, y_2) = (5, -3)\)[/tex]. Substituting these coordinates into the slope formula, we get:
[tex]\[ m = \frac{-3 - 6}{5 - (-2)} \][/tex]

First, perform the subtraction in both the numerator and the denominator:
[tex]\[ m = \frac{-3 - 6}{5 + 2} \][/tex]

This simplifies to:
[tex]\[ m = \frac{-9}{7} \][/tex]

Thus, the slope of the line [tex]\( \overleftrightarrow{GH} \)[/tex] is:
[tex]\[ -\frac{9}{7} \][/tex]

Therefore, the correct answer is:
[tex]\[ -\frac{9}{7} \][/tex]