Subtract the polynomials.

[tex]\[ \left(8y^3 + 4y^2 - y - 3\right) - \left(y^2 - 8y + 5\right) \][/tex]

The difference is [tex]\(\square\)[/tex]. (Simplify your answer.)



Answer :

To subtract the given polynomials, we start by distributing the negative sign through the second polynomial and then combine like terms.

The given polynomials are:

[tex]\[ \left(8 y^3 + 4 y^2 - y - 3\right) - \left(y^2 - 8 y + 5\right) \][/tex]

First, distribute the negative sign through the second polynomial:

[tex]\[ 8 y^3 + 4 y^2 - y - 3 - y^2 + 8 y - 5 \][/tex]

Now, combine like terms by grouping them together:

[tex]\[ 8 y^3 + (4 y^2 - y^2) + (-y + 8 y) + (-3 - 5) \][/tex]

Next, perform the operations within each group:

[tex]\[ 8 y^3 + 3 y^2 + 7 y - 8 \][/tex]

Thus, the simplified difference of the given polynomials is:

[tex]\[ 8 y^3 + 3 y^2 + 7 y - 8 \][/tex]

The difference is [tex]\( 8 y^3 + 3 y^2 + 7 y - 8 \)[/tex] .