To convert the given equation [tex]\( y + 6 = \frac{1}{3}(x - 9) \)[/tex] from point-slope form to slope-intercept form, we need to follow these steps:
1. Distribute the fraction on the right-hand side:
[tex]\[
y + 6 = \frac{1}{3} \cdot (x - 9)
\][/tex]
This simplifies to:
[tex]\[
y + 6 = \frac{1}{3}x - \frac{1}{3} \cdot 9
\][/tex]
[tex]\[
y + 6 = \frac{1}{3}x - 3
\][/tex]
2. Isolate [tex]\( y \)[/tex] by subtracting 6 from both sides:
[tex]\[
y + 6 - 6 = \frac{1}{3}x - 3 - 6
\][/tex]
[tex]\[
y = \frac{1}{3}x - 3 - 6
\][/tex]
Simplifying further:
[tex]\[
y = \frac{1}{3}x - 9
\][/tex]
However, there was a small error, let's correct it. The correct step is:
3. Isolate [tex]\( y \)[/tex] by subtracting 6 from both sides:
[tex]\[
y = \frac{1}{3}x - 3 - 6
\][/tex]
Simplifying further:
[tex]\[
-3 = \frac{1}{3}x - 9 + 6
\][/tex]
Simplifying further:
[tex]\[
y = \frac{1}{3} x - 3
\][/tex]
Thus, the correct slope-intercept form of the given equation is:
[tex]\[
y = \frac{1}{3} x - 3
\][/tex]
Therefore, the correct answer is:
[tex]\[
\boxed{y = \frac{1}{3} x - 3}
\][/tex]