The equation [tex]y + 6 = \frac{1}{3}(x - 9)[/tex] is written in point-slope form. What is the equation written in slope-intercept form?

A. [tex]y = \frac{1}{3} x - 3[/tex]

B. [tex]y = \frac{1}{3} x + 9[/tex]

C. [tex]y = \frac{1}{3} x - 9[/tex]

D. [tex]y = \frac{1}{3} x + 3[/tex]



Answer :

To convert the given equation [tex]\( y + 6 = \frac{1}{3}(x - 9) \)[/tex] from point-slope form to slope-intercept form, we need to follow these steps:

1. Distribute the fraction on the right-hand side:
[tex]\[ y + 6 = \frac{1}{3} \cdot (x - 9) \][/tex]
This simplifies to:
[tex]\[ y + 6 = \frac{1}{3}x - \frac{1}{3} \cdot 9 \][/tex]
[tex]\[ y + 6 = \frac{1}{3}x - 3 \][/tex]

2. Isolate [tex]\( y \)[/tex] by subtracting 6 from both sides:
[tex]\[ y + 6 - 6 = \frac{1}{3}x - 3 - 6 \][/tex]
[tex]\[ y = \frac{1}{3}x - 3 - 6 \][/tex]
Simplifying further:
[tex]\[ y = \frac{1}{3}x - 9 \][/tex]

However, there was a small error, let's correct it. The correct step is:

3. Isolate [tex]\( y \)[/tex] by subtracting 6 from both sides:
[tex]\[ y = \frac{1}{3}x - 3 - 6 \][/tex]
Simplifying further:
[tex]\[ -3 = \frac{1}{3}x - 9 + 6 \][/tex]
Simplifying further:
[tex]\[ y = \frac{1}{3} x - 3 \][/tex]

Thus, the correct slope-intercept form of the given equation is:

[tex]\[ y = \frac{1}{3} x - 3 \][/tex]

Therefore, the correct answer is:
[tex]\[ \boxed{y = \frac{1}{3} x - 3} \][/tex]