Look at this table:

[tex]\[
\begin{tabular}{|c|c|}
\hline
$x$ & $y$ \\
\hline
2 & 2 \\
\hline
3 & 0 \\
\hline
4 & -2 \\
\hline
5 & -4 \\
\hline
6 & -6 \\
\hline
\end{tabular}
\][/tex]

Write a linear [tex]\((y = mx + b)\)[/tex], quadratic [tex]\(\left(y = ax^2\right)\)[/tex], or exponential [tex]\(\left(y = a(b)^x\right)\)[/tex] function that models the data.

[tex]\[ y = \square \][/tex]



Answer :

To find a function that models the given data points, we need to determine the best-fit equation that can describe the relationship between [tex]\(x\)[/tex] and [tex]\(y\)[/tex]. For the data provided, we're looking for a linear function of the form [tex]\(y = mx + b\)[/tex].

Here is how we can find the coefficients [tex]\(m\)[/tex] (the slope) and [tex]\(b\)[/tex] (the y-intercept):

### Step-by-Step Solution:

1. Identify the given data points:
The provided data points are:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 2 & 2 \\ \hline 3 & 0 \\ \hline 4 & -2 \\ \hline 5 & -4 \\ \hline 6 & -6 \\ \hline \end{array} \][/tex]

2. Check the nature of the relationship:
Observe that as [tex]\(x\)[/tex] increases, [tex]\(y\)[/tex] decreases linearly. This suggests a linear relationship.

3. Formulate the linear equation:
A linear relationship can be expressed as:
[tex]\[ y = mx + b \][/tex]

4. Determine the slope [tex]\(m\)[/tex] and y-intercept [tex]\(b\)[/tex]:
When we fit the data to a linear equation, we find:
[tex]\[ m = -2 \quad \text{and} \quad b = 6 \][/tex]

5. Write the final equation:
Substituting [tex]\(m\)[/tex] and [tex]\(b\)[/tex] into the linear equation, we get:
[tex]\[ y = -2x + 6 \][/tex]

Therefore, the linear function that models the given data is:
[tex]\[ y = -2x + 6 \][/tex]