Look at this table:

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-1 & 1 \\
\hline
0 & 2 \\
\hline
1 & 4 \\
\hline
2 & 8 \\
\hline
3 & 16 \\
\hline
\end{tabular}

Write a linear [tex]\((y = mx + b)\)[/tex], quadratic [tex]\(\left(y = ax^2\right)\)[/tex], or exponential [tex]\(\left(y = a(b)^x\right)\)[/tex] function that models the data.

[tex]\[ y = \][/tex]
[tex]\(\square\)[/tex]



Answer :

To determine the function that models the given data, we will analyze the pattern in the values of [tex]\( y \)[/tex] as [tex]\( x \)[/tex] changes.

Here is the provided table:

[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -1 & 1 \\ \hline 0 & 2 \\ \hline 1 & 4 \\ \hline 2 & 8 \\ \hline 3 & 16 \\ \hline \end{array} \][/tex]

We need to decide whether a linear, quadratic, or exponential function best fits the data.

1. Linear function ([tex]\( y = mx + b \)[/tex]):
- Calculate the differences in [tex]\( y \)[/tex] values:
1. [tex]\( 2 - 1 = 1 \)[/tex]
2. [tex]\( 4 - 2 = 2 \)[/tex]
3. [tex]\( 8 - 4 = 4 \)[/tex]
4. [tex]\( 16 - 8 = 8 \)[/tex]

The differences are not constant, so the data is not linear.

2. Quadratic function ([tex]\( y = ax^2 \)[/tex]):
- Calculate the second differences, which are the differences of the first differences:
1. [tex]\( 2 - 1 = 1 \)[/tex]
2. [tex]\( 4 - 2 = 2 \)[/tex]
3. [tex]\( 8 - 4 = 4 \)[/tex]
4. [tex]\( 16 - 8 = 8 \)[/tex]

The second differences are also not constant. Thus, the data does not fit a quadratic model.

3. Exponential function ([tex]\( y = a \cdot b^x \)[/tex]):
- Analyze the ratio between consecutive [tex]\( y \)[/tex] values:
1. [tex]\( \frac{2}{1} = 2 \)[/tex]
2. [tex]\( \frac{4}{2} = 2 \)[/tex]
3. [tex]\( \frac{8}{4} = 2 \)[/tex]
4. [tex]\( \frac{16}{8} = 2 \)[/tex]

The ratio between consecutive values is constant (2), indicating an exponential relationship.

We will construct an exponential function in the form [tex]\( y = a \cdot b^x \)[/tex]:

- From [tex]\( x = 0 \)[/tex] and [tex]\( y = 2 \)[/tex], we can see that:
[tex]\[ 2 = a \cdot b^0 \implies 2 = a \cdot 1 \implies a = 2 \][/tex]

- Next, we use the point [tex]\( (x = 1, y = 4) \)[/tex]:
[tex]\[ 4 = 2 \cdot b^1 \implies 4 = 2 \cdot b \implies b = 2 \][/tex]

Thus, the exponential function that models the data is:
[tex]\[ y = 2 \cdot (2^x) \][/tex]

So, the function is:
[tex]\[ y = 2 \cdot (2^x) \][/tex]