To determine the equation that best models the given data, we can analyze the points provided in the table:
[tex]\[
\begin{array}{|c|c|}
\hline
x & y \\
\hline
-6 & -216 \\
\hline
-5 & -150 \\
\hline
-4 & -96 \\
\hline
-3 & -54 \\
\hline
-2 & -24 \\
\hline
\end{array}
\][/tex]
We need to decide whether a linear, quadratic, or exponential function best fits the provided values. Let us focus on finding a quadratic function of the form [tex]\(y = ax^2 + bx + c\)[/tex].
From thorough analysis, we determine the quadratic best fitting function for the data. The quadratic equation found is of the form [tex]\(y = ax^2 + bx + c\)[/tex] where:
- [tex]\(a = -6\)[/tex]
- [tex]\(b = 0\)[/tex]
- [tex]\(c = 0\)[/tex]
Substituting these values into the quadratic equation, we have:
[tex]\[
y = -6x^2
\][/tex]
Therefore, the model that best fits the given data is:
[tex]\[
y = -6x^2
\][/tex]