Answer :
Sure! Let's analyze the given table of data points to determine the most suitable function to model the data.
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 3 & -19 \\ \hline 4 & -28 \\ \hline 5 & -37 \\ \hline 6 & -46 \\ \hline 7 & -55 \\ \hline \end{array} \][/tex]
We aim to determine a linear function of the form [tex]\(y = mx + b\)[/tex].
Here are the steps to define the linear function:
1. Identify the slope ([tex]\(m\)[/tex]):
[tex]\[ m = -9.000000000000002 \][/tex]
2. Identify the y-intercept ([tex]\(b\)[/tex]):
[tex]\[ b = 7.999999999999996 \][/tex]
3. Construct the linear function:
Substitute the values of [tex]\(m\)[/tex] and [tex]\(b\)[/tex] into the linear function formula [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = -9x + 8 \][/tex]
This linear equation accurately models the given data points from the table. Note this form, where the slope is [tex]\(-9\)[/tex] and the y-intercept is [tex]\(8\)[/tex].
So, the function that models the data is:
[tex]\[ y = -9x + 8 \][/tex]
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 3 & -19 \\ \hline 4 & -28 \\ \hline 5 & -37 \\ \hline 6 & -46 \\ \hline 7 & -55 \\ \hline \end{array} \][/tex]
We aim to determine a linear function of the form [tex]\(y = mx + b\)[/tex].
Here are the steps to define the linear function:
1. Identify the slope ([tex]\(m\)[/tex]):
[tex]\[ m = -9.000000000000002 \][/tex]
2. Identify the y-intercept ([tex]\(b\)[/tex]):
[tex]\[ b = 7.999999999999996 \][/tex]
3. Construct the linear function:
Substitute the values of [tex]\(m\)[/tex] and [tex]\(b\)[/tex] into the linear function formula [tex]\(y = mx + b\)[/tex]:
[tex]\[ y = -9x + 8 \][/tex]
This linear equation accurately models the given data points from the table. Note this form, where the slope is [tex]\(-9\)[/tex] and the y-intercept is [tex]\(8\)[/tex].
So, the function that models the data is:
[tex]\[ y = -9x + 8 \][/tex]