Simplify and express answers using positive exponents only.

[tex]\[
\frac{6 x^{-2} y^{-3}}{4 x^6 y^{-5}}
\][/tex]

[tex]\[
\frac{6 x^{-2} y^{-3}}{4 x^6 y^{-5}} = \square \quad (\text{Use positive exponents only.})
\][/tex]



Answer :

To simplify the expression:

[tex]\[ \frac{6 x^{-2} y^{-3}}{4 x^6 y^{-5}} \][/tex]

we follow these steps:

1. Separate the coefficients from the variables:
[tex]\[ \frac{6}{4} \cdot \frac{x^{-2}}{x^6} \cdot \frac{y^{-3}}{y^{-5}} \][/tex]

2. Simplify the coefficients:
[tex]\[ \frac{6}{4} = \frac{3}{2} \][/tex]

3. Apply the quotient rule for exponents to the [tex]\(x\)[/tex] terms:
[tex]\[ \frac{x^{-2}}{x^6} = x^{-2 - 6} = x^{-8} \][/tex]

4. Apply the quotient rule for exponents to the [tex]\(y\)[/tex] terms:
[tex]\[ \frac{y^{-3}}{y^{-5}} = y^{-3 - (-5)} = y^{-3 + 5} = y^2 \][/tex]

5. Combine all the simplified parts:
[tex]\[ \frac{3}{2} \cdot x^{-8} \cdot y^2 \][/tex]

6. Express using positive exponents:
[tex]\[ x^{-8} = \frac{1}{x^8} \][/tex]

So:
[tex]\[ \frac{3}{2} \cdot \frac{1}{x^8} \cdot y^2 = \frac{3y^2}{2x^8} \][/tex]

Thus, the simplified expression is:

[tex]\[ \boxed{\frac{3y^2}{2x^8}} \][/tex]