To determine whether [tex]\( R \subset A \)[/tex], we must verify whether every element in [tex]\( R \)[/tex] is also an element of [tex]\( A \)[/tex].
Given:
- [tex]\( U \)[/tex] is the set of all real numbers.
- [tex]\( A \)[/tex] is the set of all odd integers.
- [tex]\( R = \{3, 7, 11, 27\} \)[/tex].
Let's analyze each element in [tex]\( R \)[/tex] to see if it is in [tex]\( A \)[/tex].
1. [tex]\( 3 \)[/tex]:
- [tex]\( 3 \)[/tex] is an integer and it's odd.
- Therefore, [tex]\( 3 \in A \)[/tex].
2. [tex]\( 7 \)[/tex]:
- [tex]\( 7 \)[/tex] is an integer and it's odd.
- Therefore, [tex]\( 7 \in A \)[/tex].
3. [tex]\( 11 \)[/tex]:
- [tex]\( 11 \)[/tex] is an integer and it's odd.
- Therefore, [tex]\( 11 \in A \)[/tex].
4. [tex]\( 27 \)[/tex]:
- [tex]\( 27 \)[/tex] is an integer and it's odd.
- Therefore, [tex]\( 27 \in A \)[/tex].
Since all elements of [tex]\( R \)[/tex] (which are [tex]\( 3, 7, 11, \)[/tex] and [tex]\( 27 \)[/tex]) are elements of [tex]\( A \)[/tex] (the set of odd integers), we can conclude that [tex]\( R \subset A \)[/tex].
Therefore, the correct answer is:
Yes, because all the elements of set [tex]\( R \)[/tex] are in set [tex]\( A \)[/tex].