What is the difference of the polynomials?

[tex]\[ \left(5x^3 + 4x^2\right) - \left(6x^2 - 2x - 9\right) \][/tex]

A. [tex]\(-x^3 + 6x^2 + 9\)[/tex]

B. [tex]\(-x^3 + 2x^2 - 9\)[/tex]

C. [tex]\(5x^3 - 2x^2 - 2x - 9\)[/tex]

D. [tex]\(5x^3 - 2x^2 + 2x + 9\)[/tex]



Answer :

To find the difference between the polynomials [tex]\(\left(5 x^3 + 4 x^2\right)\)[/tex] and [tex]\(\left(6 x^2 - 2 x - 9\right)\)[/tex], we need to subtract the second polynomial from the first.

Here's a step-by-step solution:

1. Write down the polynomials:
[tex]\[ p1(x) = 5x^3 + 4x^2 + 0x + 0 \][/tex]
[tex]\[ p2(x) = 0x^3 + 6x^2 - 2x - 9 \][/tex]

2. Set up the expression for subtraction:
[tex]\[ (5x^3 + 4x^2 + 0x + 0) - (0x^3 + 6x^2 - 2x - 9) \][/tex]

3. Distribute the subtraction across the second polynomial:
[tex]\[ 5x^3 + 4x^2 + 0x + 0 - 0x^3 - 6x^2 + 2x + 9 \][/tex]

4. Combine like terms:
Let's combine the coefficients of each power of [tex]\(x\)[/tex]:
- For [tex]\(x^3\)[/tex]: [tex]\(5x^3 - 0x^3 = 5x^3\)[/tex]
- For [tex]\(x^2\)[/tex]: [tex]\(4x^2 - 6x^2 = -2x^2\)[/tex]
- For [tex]\(x\)[/tex]: [tex]\(0x + 2x = 2x\)[/tex]
- For the constant term: [tex]\(0 + 9 = 9\)[/tex]

5. Write the resulting polynomial:
[tex]\[ 5x^3 - 2x^2 + 2x + 9 \][/tex]

Thus, the difference of the polynomials is:
[tex]\[ 5x^3 - 2x^2 + 2x + 9 \][/tex]

So, the correct choice is:
[tex]\[ 5 x^3 - 2 x^2 + 2 x + 9 \][/tex]