A chemist dilutes a 1.0 mL sample of [tex]2.0 \, M \, KOO_3[/tex] by adding water. If the concentration of the solution obtained is [tex]0.0080 \, M[/tex], what is the final volume?

Use [tex]M_1V_1 = M_2V_2[/tex].

A. 125 mL
B. 250 mL
C. 500 mL
D. 2000 mL



Answer :

To solve the problem of diluting a 1.0 mL sample of a 2.0 M solution to obtain a final concentration of 0.0080 M, we use the formula for dilution:

[tex]\[ M_1 \times V_1 = M_2 \times V_2 \][/tex]

Where:
- [tex]\( M_1 \)[/tex] is the initial molarity (2.0 M)
- [tex]\( V_1 \)[/tex] is the initial volume (1.0 mL)
- [tex]\( M_2 \)[/tex] is the final molarity (0.0080 M)
- [tex]\( V_2 \)[/tex] is the final volume (in mL), which we need to find

We can rearrange the formula to solve for [tex]\( V_2 \)[/tex]:

[tex]\[ V_2 = \frac{M_1 \times V_1}{M_2} \][/tex]

Now, plug in the given values:

[tex]\[ V_2 = \frac{2.0 \, \text{M} \times 1.0 \, \text{mL}}{0.0080 \, \text{M}} \][/tex]

Performing the calculation:

[tex]\[ V_2 = \frac{2.0 \, \text{M} \cdot 1.0 \, \text{mL}}{0.0080 \, \text{M}} \][/tex]
[tex]\[ V_2 = \frac{2.0 \, \text{mL}}{0.0080} \][/tex]
[tex]\[ V_2 = 250.0 \, \text{mL} \][/tex]

Therefore, the final volume [tex]\( V_2 \)[/tex] required to achieve a concentration of 0.0080 M is 250.0 mL.

So, the correct answer is:
[tex]\[ \boxed{250 \, \text{mL}} \][/tex]