Use the cosine double-angle identity [tex]\(\cos (2\theta) = 2 \cos^2 \theta - 1\)[/tex] to derive an identity for [tex]\(\cos^2 \theta\)[/tex].

[tex]\[
\sin^2 \theta = \frac{1 - \cos(2\theta)}{2}
\][/tex]



Answer :

To derive an identity for [tex]\(\cos^2 \theta\)[/tex] using the given cosine double-angle identity, follow these steps:

1. Start with the cosine double-angle identity:
[tex]\[ \cos(2\theta) = 2 \cos^2 \theta - 1 \][/tex]

2. Rearrange the identity to solve for [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos(2\theta) + 1 = 2 \cos^2 \theta \][/tex]

3. Isolate [tex]\(\cos^2 \theta\)[/tex]:
[tex]\[ \cos^2 \theta = \frac{\cos(2\theta) + 1}{2} \][/tex]

Thus, the identity for [tex]\(\cos^2 \theta\)[/tex] derived from the cosine double-angle identity [tex]\(\cos(2\theta) = 2 \cos^2 \theta - 1\)[/tex] is:
[tex]\[ \cos^2 \theta = \frac{\cos(2\theta) + 1}{2} \][/tex]