A small bob of mass [tex]2.0 \times 10^{-2} \, \text{kg}[/tex] oscillates as a simple pendulum with an amplitude of [tex]5.0 \times 10^{-2} \, \text{m}[/tex] and a period of [tex]2.1 \, \text{s}[/tex]. Calculate the maximum velocity of the bob.



Answer :

To calculate the maximum velocity of a small bob oscillating as a simple pendulum, we need to use the given data:

1. Amplitude [tex]\( A \)[/tex] = [tex]\( 5.0 \times 10^{-2} \)[/tex] meters
2. Period [tex]\( T \)[/tex] = 21 seconds

The formula for the maximum velocity ([tex]\( v_{\text{max}} \)[/tex]) of a simple pendulum is given by:
[tex]\[ v_{\text{max}} = \frac{2 \pi A}{T} \][/tex]
where:
- [tex]\( A \)[/tex] is the amplitude,
- [tex]\( T \)[/tex] is the period,
- [tex]\( \pi \)[/tex] is a mathematical constant approximately equal to 3.14159.

Plugging in the given values:

[tex]\[ A = 5.0 \times 10^{-2} \, \text{m} \][/tex]
[tex]\[ T = 21 \, \text{s} \][/tex]

Now, substitute these values into the formula:

[tex]\[ v_{\text{max}} = \frac{2 \pi \times 5.0 \times 10^{-2}}{21} \][/tex]

After performing the calculations, we find that:

[tex]\[ v_{\text{max}} = 0.014959965017094254 \, \text{m/s} \][/tex]

Thus, the maximum velocity of the bob is approximately [tex]\( 0.01496 \, \text{m/s} \)[/tex].