Let's solve the expression step-by-step:
1. Simplify the numerator:
The numerator is straightforward:
[tex]\[
\frac{1}{6}
\][/tex]
This simplifies to approximately:
[tex]\[
0.16666666666666666
\][/tex]
2. Simplify the denominator:
First, sum the values in the denominator:
[tex]\[
3456 + 8 = 3464
\][/tex]
Now, divide 1111 by 3464:
[tex]\[
\frac{1111}{3464} \approx 0.3207274826789838
\][/tex]
3. Calculate the final result:
Now, we multiply the simplified numerator by the simplified denominator:
[tex]\[
0.16666666666666666 \times 0.3207274826789838 \approx 0.0534545804464973
\][/tex]
Therefore, the detailed step-by-step solution of the given expression
[tex]\[
\frac{1}{6} \frac{1111}{3456+8}
\][/tex]
is:
Numerator: [tex]\( \frac{1}{6} \approx 0.16666666666666666 \)[/tex] \\
Denominator: [tex]\( \frac{1111}{3464} \approx 0.3207274826789838 \)[/tex] \\
Result: [tex]\( 0.16666666666666666 \times 0.3207274826789838 \approx 0.0534545804464973 \)[/tex]
Thus,
[tex]\[
\frac{1}{6} \frac{1111}{3456+8} \approx 0.0534545804464973
\][/tex]