Find the midpoint of the line segment with the endpoints [tex]$A$[/tex] and [tex]$B$[/tex].

[tex]A(8,2)[/tex]; [tex]B(6,4)[/tex]

The midpoint of the line segment is [tex]\square[/tex]. (Type an ordered pair.)



Answer :

To find the midpoint of a line segment with endpoints [tex]\( A(x_1, y_1) \)[/tex] and [tex]\( B(x_2, y_2) \)[/tex], you can use the midpoint formula. The midpoint formula is given by:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given points [tex]\( A(8,2) \)[/tex] and [tex]\( B(6,4) \)[/tex]:

1. Identify the coordinates of point [tex]\( A \)[/tex]:
[tex]\[ A(8, 2) \][/tex]

2. Identify the coordinates of point [tex]\( B \)[/tex]:
[tex]\[ B(6, 4) \][/tex]

3. Apply the midpoint formula:

- Calculate the x-coordinate of the midpoint:
[tex]\[ M_x = \frac{8 + 6}{2} = \frac{14}{2} = 7.0 \][/tex]

- Calculate the y-coordinate of the midpoint:
[tex]\[ M_y = \frac{2 + 4}{2} = \frac{6}{2} = 3.0 \][/tex]

4. Combine the x and y coordinates to form the midpoint as an ordered pair:

[tex]\[ M = (7.0, 3.0) \][/tex]

Therefore, the midpoint of the line segment with endpoints [tex]\( A(8,2) \)[/tex] and [tex]\( B(6,4) \)[/tex] is [tex]\((7.0, 3.0)\)[/tex].