Let’s carefully break down the given mathematical expression step-by-step. Here's the expression we need to simplify:
[tex]\[ -5 + \{-8 + 3 - (+3 - (-4 + 6) \cdot (-7 + 8) + 3) + 4 \} \][/tex]
### Step 1: Simplify the innermost parentheses
First, we simplify [tex]\(-4 + 6\)[/tex]:
[tex]\[ -4 + 6 = 2 \][/tex]
Next, we simplify [tex]\(-7 + 8\)[/tex]:
[tex]\[ -7 + 8 = 1 \][/tex]
### Step 2: Multiply the results from step 1
Now, multiply the results:
[tex]\[ 2 \cdot 1 = 2 \][/tex]
### Step 3: Substitute the multiplication result back into the expression and simplify further
Replace [tex]\(2 \cdot 1\)[/tex] in the expression:
[tex]\[ +3 - 2 + 3 \][/tex]
Simplify within the innermost parentheses:
[tex]\[ +3 - 2 + 3 = 4 \][/tex]
### Step 4: Substitute this result back into the curly braces expression
Replace the simplified result back:
[tex]\[ -8 + 4 + 4 \][/tex]
Simplify within the curly braces:
[tex]\[ -8 + 4 + 4 = 0 \][/tex]
### Step 5: Simplify the final expression
Now, substitute this result back into the original expression:
[tex]\[ -5 + 0 \][/tex]
Therefore, the final result is:
[tex]\[ -5 \][/tex]
So, the simplified form of the given expression is:
[tex]\[ -5 \][/tex]