Calculate the determinant for the matrix [tex]\( A \)[/tex].

[tex]\[
A=\left[\begin{array}{cc}
2 & -3 \\
-1 & 4
\end{array}\right]
\][/tex]

Answer: [tex]\(\square\)[/tex]



Answer :

To calculate the determinant of the matrix A:
[tex]\[ A = \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \][/tex]

The determinant of a 2x2 matrix of the form:
[tex]\[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \][/tex]

is given by the formula:
[tex]\[ \text{det}(A) = ad - bc \][/tex]

For our matrix A:
[tex]\[ a = 2, \quad b = -3, \quad c = -1, \quad d = 4 \][/tex]

Substituting these values into the formula, we get:
[tex]\[ \text{det}(A) = (2 \cdot 4) - (-3 \cdot -1) \][/tex]
[tex]\[ = 8 - 3 \][/tex]
[tex]\[ = 5 \][/tex]

So, the determinant of the matrix A is:
[tex]\[ \boxed{5} \][/tex]