Solve for [tex]\( r \)[/tex].

[tex]\[ 2r - 15 = -9r + 18 \][/tex]

A. [tex]\( r = 0.3 \)[/tex]

B. [tex]\( r = 3 \)[/tex]

C. [tex]\( r = -3 \)[/tex]

D. [tex]\( r = -0.3 \)[/tex]



Answer :

Let's solve the equation [tex]\(2r - 15 = -9r + 18\)[/tex] step by step.

1. Combine like terms by moving all terms involving [tex]\(r\)[/tex] to one side of the equation and constants to the other side. To do this, add [tex]\(9r\)[/tex] to both sides and add [tex]\(15\)[/tex] to both sides:
[tex]\[ 2r + 9r - 15 + 15 = -9r + 9r + 18 + 15 \][/tex]

2. Simplify the equation:
[tex]\[ 11r = 33 \][/tex]

3. Solve for [tex]\(r\)[/tex] by dividing both sides of the equation by 11:
[tex]\[ r = \frac{33}{11} \][/tex]

4. Simplify the fraction:
[tex]\[ r = 3 \][/tex]

Now we need to check if this value of [tex]\(r\)[/tex] is in the given list of possible values: [tex]\(0.3\)[/tex], [tex]\(3\)[/tex], [tex]\(-3\)[/tex], [tex]\(-0.3\)[/tex].

Among the given possibilities, we have [tex]\(r = 3\)[/tex].

Conclusion: The valid solution to the equation [tex]\(2r - 15 = -9r + 18\)[/tex] among the given options is [tex]\(r = 3\)[/tex].