11. A person with a mass of 15 kg is walking downhill at a velocity of [tex]10 \, \text{m/s}[/tex]. What's the walker's momentum?

A. [tex]75 \, \text{kg} \cdot \text{m/s}[/tex]

B. [tex]150 \, \text{kg} \cdot \text{m/s}[/tex]

C. [tex]15 \, \text{kg} \cdot \text{m/s}[/tex]

D. [tex]5 \, \text{kg} \cdot \text{m/s}[/tex]



Answer :

To solve for the walker's momentum, we will use the fundamental formula for momentum in physics. The formula for momentum ([tex]\( p \)[/tex]) is given by:

[tex]\[ p = m \cdot v \][/tex]

where:
- [tex]\( p \)[/tex] is the momentum,
- [tex]\( m \)[/tex] is the mass,
- [tex]\( v \)[/tex] is the velocity.

Given in the problem:
- The mass ([tex]\( m \)[/tex]) of the walker is [tex]\( 15 \, \text{kg} \)[/tex],
- The velocity ([tex]\( v \)[/tex]) of the walker is [tex]\( 10 \, \text{m/s} \)[/tex].

Substitute the given values into the formula:

[tex]\[ p = 15 \, \text{kg} \cdot 10 \, \text{m/s} \][/tex]

By performing the multiplication, we get:

[tex]\[ p = 150 \, \text{kg} \cdot \text{m/s} \][/tex]

So, the walker's momentum is [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex].

Looking at the given choices:
- A. [tex]\( 75 \, \text{kg} \cdot \text{m/s} \)[/tex]
- B. [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex]
- C. [tex]\( 15 \, \text{kg} \cdot \text{m/s} \)[/tex]
- D. [tex]\( 5 \, \text{kg} \cdot \text{m/s} \)[/tex]

The correct answer is B. [tex]\( 150 \, \text{kg} \cdot \text{m/s} \)[/tex].