Given that the starting population, [tex]$N(0)$[/tex], is 10 and has a growth rate, [tex]$m$[/tex], of 2 individuals per unit of time, what will the population be at 25 units of time?

A. 125
B. 80
C. 60
D. 75



Answer :

Sure, let's solve this problem step-by-step.

The problem is based on the linear growth formula for population:
[tex]\[ N(t) = m t + N(0) \][/tex]
where:
- [tex]\(N(t)\)[/tex] represents the population at time [tex]\(t\)[/tex]
- [tex]\(m\)[/tex] is the growth rate (individuals per unit of time)
- [tex]\(N(0)\)[/tex] is the starting population at time [tex]\(t=0\)[/tex]

Given values:
- The starting population [tex]\(N(0)\)[/tex] is 10
- The growth rate [tex]\(m\)[/tex] is 2 individuals per unit of time
- The time [tex]\(t\)[/tex] is 25 units

We need to find the population [tex]\(N(t)\)[/tex] at [tex]\(t = 25\)[/tex]:
[tex]\[ N(t) = m \cdot t + N(0) \][/tex]

Substituting the given values into the formula:
[tex]\[ N(25) = 2 \cdot 25 + 10 \][/tex]

Now, let's perform the calculations step-by-step:

1. Multiply the growth rate [tex]\(m\)[/tex] by the time [tex]\(t\)[/tex]:
[tex]\[ 2 \cdot 25 = 50 \][/tex]

2. Add the starting population [tex]\(N(0)\)[/tex] to the result:
[tex]\[ 50 + 10 = 60 \][/tex]

Therefore, the population at 25 units of time is:
[tex]\[ N(25) = 60 \][/tex]

Hence, the correct answer is:

C. 60