Drag the tiles to the correct boxes. Not all tiles will be used.

Determine which steps are used to find the product shown. Put the steps in the order in which they would be performed.

[tex]\[
\frac{x^2+7x+10}{x^2+4x+4} \cdot \frac{x^2+3x+2}{x^2+6x+5}
\][/tex]

[tex]\[
\begin{array}{c}
x+2 \\
\frac{(x+7)(x+1)}{(x+4)(x+2)} \\
\frac{(x+7)(x+1)}{(x+4)(x+1)} \cdot \frac{(x+3)(x+1)}{(x+3)(x+2)} \\
\frac{(x+5)(x+2)}{(x+2)(x+5)} \\
\frac{(x+5)}{(x+2)} \cdot \frac{(x+2)}{(x+5)} \\
\frac{(x+2)(x+5)}{(x+2)(x+2)} \cdot \frac{(x+1)(x+2)}{(x+5)(x+1)} \\
\frac{(x+5)(x+2)}{(x+5)} \\
\hline
\end{array}
\][/tex]

1.



Answer :

To solve the given problem, we need to determine the product of the two fractions [tex]\(\frac{x^2+7x+10}{x^2+4x+4} \cdot \frac{x^2+3x+2}{x^2+6x+5}\)[/tex] in a step-by-step manner.

Here's the correct order of steps:

1. Factor the numerators and denominators.
The given fractions are:
[tex]\(\frac{x^2 + 7x + 10}{x^2 + 4x + 4} \cdot \frac{x^2 + 3x + 2}{x^2 + 6x + 5}\)[/tex]

After factoring, we get:
[tex]\(\frac{(x+5)(x+2)}{(x+2)(x+2)} \cdot \frac{(x+1)(x+2)}{(x+5)(x+1)}\)[/tex]

2. Express the product of the fractions with the factored forms:
[tex]\(\frac{(x+5)(x+2)}{(x+2)(x+2)} \cdot \frac{(x+1)(x+2)}{(x+5)(x+1)}\)[/tex]

3. Simplify the product by canceling out common factors:
After canceling out [tex]\((x+2)\)[/tex] and other possible common factors, the expression simplifies to:
[tex]\(\frac{(x+5)(x+2)}{(x+2)(x+2)} \cdot \frac{(x+1)(x+2)}{(x+5)(x+1)}\)[/tex]

This simplifies to:
[tex]\(\frac{(x+5)}{(x+2)} \cdot \frac{(x+2)}{(x+5)}\)[/tex]

4. Further simplify:
Simplifying further gives:
[tex]\(\frac{(x+5)}{(x+2)} \cdot \frac{(x+2)}{(x+5)} = 1\)[/tex]

The correct steps in sequence are:

1. [tex]\(\frac{(x+5)(x+2)}{(x+2)(x+2)} \cdot \frac{(x+1)(x+2)}{(x+5)(x+1)}\)[/tex]
2. [tex]\(\frac{(x+5)}{(x+2)} \cdot \frac{(x+2)}{(x+5)}\)[/tex]

Selecting the relevant tiles:

1. [tex]\(\frac{(x+5)(x+2)}{(x+2)(x+2)} \cdot \frac{(x+1)(x+2)}{(x+5)(x+1)}\)[/tex]
2. [tex]\(\frac{(x+5)}{(x+2)} \cdot \frac{(x+2)}{(x+5)}\)[/tex]