Solve the following ratio and proportion.

[tex]\[ 30:45::5:x \][/tex]

A. [tex]\( x = 7.5 \)[/tex]

B. [tex]\( x = 17.5 \)[/tex]

C. [tex]\( x = 5.7 \)[/tex]

D. [tex]\( x = 25 \)[/tex]



Answer :

To solve the given ratio and proportion problem, let's go through it step-by-step.

The given proportion is:

[tex]\[ 30 : 45 :: 5 : x \][/tex]

This notation means:

[tex]\[ \frac{30}{45} = \frac{5}{x} \][/tex]

To find [tex]\(x\)[/tex], we can use the property of proportions which states that the product of the means equals the product of the extremes. Therefore, we have:

[tex]\[ 30 \times x = 45 \times 5 \][/tex]

Now, let's solve for [tex]\(x\)[/tex]:

1. Multiply [tex]\(45\)[/tex] and [tex]\(5\)[/tex]:

[tex]\[ 45 \times 5 = 225 \][/tex]

2. Next, to find [tex]\(x\)[/tex], we divide [tex]\(225\)[/tex] by [tex]\(30\)[/tex]:

[tex]\[ x = \frac{225}{30} \][/tex]

3. Simplify the fraction by dividing the numerator and the denominator by their greatest common divisor, which is [tex]\(15\)[/tex]:

[tex]\[ \frac{225 \div 15}{30 \div 15} = \frac{15}{2} = 7.5 \][/tex]

Thus, the value of [tex]\(x\)[/tex] is [tex]\(7.5\)[/tex].

Therefore, the correct option is:
[tex]\[ a. \, x = 7.5 \][/tex]