Let [tex]$g(x) = 2x^2 + 4x + 6$[/tex]. Find [tex]$g(p+4)$[/tex].

[tex]g(p+4) =[/tex]

[tex]\square[/tex]

(Simplify your answer.)



Answer :

Sure, let's solve this step-by-step.

Given the function [tex]\( g(x) = 2x^2 + 4x + 6 \)[/tex], we need to find [tex]\( g(p+4) \)[/tex].

1. Substitute [tex]\( p+4 \)[/tex] for [tex]\( x \)[/tex] in the function [tex]\( g(x) \)[/tex]:

[tex]\[ g(p+4) = 2(p+4)^2 + 4(p+4) + 6 \][/tex]

2. Expand the squared term [tex]\( (p+4)^2 \)[/tex]:

[tex]\[ (p+4)^2 = p^2 + 8p + 16 \][/tex]

3. Substitute this expansion back into the expression:

[tex]\[ g(p+4) = 2(p^2 + 8p + 16) + 4(p+4) + 6 \][/tex]

4. Distribute the 2 through the first group of terms:

[tex]\[ g(p+4) = 2p^2 + 16p + 32 + 4(p+4) + 6 \][/tex]

5. Distribute the 4 through the second group of terms:

[tex]\[ g(p+4) = 2p^2 + 16p + 32 + 4p + 16 + 6 \][/tex]

6. Combine like terms:

[tex]\[ g(p+4) = 2p^2 + (16p + 4p) + (32 + 16 + 6) \][/tex]

[tex]\[ g(p+4) = 2p^2 + 20p + 54 \][/tex]

So, the simplified expression for [tex]\( g(p+4) \)[/tex] is:

[tex]\[ g(p+4) = 2p^2 + 20p + 54 \][/tex]