The endpoints of [tex]$\overline{GH}$[/tex] are [tex]$G(14, 3)$[/tex] and [tex]$H(10, -6)$[/tex]. What is the midpoint of [tex]$\overline{GH}$[/tex]?

A. [tex]$(6, -15)$[/tex]
B. [tex]$\left(-2, -\frac{9}{2}\right)$[/tex]
C. [tex]$\left(12, -\frac{3}{2}\right)$[/tex]
D. [tex]$(24, -3)$[/tex]
E. [tex]$(18, 12)$[/tex]



Answer :

To find the midpoint of a line segment given its endpoints, we use the midpoint formula. The midpoint [tex]\( M \)[/tex] of a line segment with endpoints [tex]\( G(x_1, y_1) \)[/tex] and [tex]\( H(x_2, y_2) \)[/tex] is calculated as follows:

[tex]\[ M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]

Given the endpoints [tex]\( G(14, 3) \)[/tex] and [tex]\( H(10, -6) \)[/tex], let's apply the formula step-by-step:

1. Identify the coordinates of the endpoints:
- [tex]\( G(14, 3) \)[/tex] where [tex]\( x_1 = 14 \)[/tex] and [tex]\( y_1 = 3 \)[/tex]
- [tex]\( H(10, -6) \)[/tex] where [tex]\( x_2 = 10 \)[/tex] and [tex]\( y_2 = -6 \)[/tex]

2. Calculate the x-coordinate of the midpoint:
[tex]\[ \frac{x_1 + x_2}{2} = \frac{14 + 10}{2} = \frac{24}{2} = 12 \][/tex]

3. Calculate the y-coordinate of the midpoint:
[tex]\[ \frac{y_1 + y_2}{2} = \frac{3 + (-6)}{2} = \frac{3 - 6}{2} = \frac{-3}{2} = -\frac{3}{2} \][/tex]

4. Combine the results to get the midpoint:
[tex]\[ M = \left( 12, -\frac{3}{2} \right) \][/tex]

Therefore, the midpoint of [tex]\( \overline{GH} \)[/tex] is [tex]\( \left( 12, -\frac{3}{2} \right) \)[/tex].

So the correct answer is:
C. [tex]\( \left( 12, -\frac{3}{2} \right) \)[/tex]