Which rule should be applied to reflect [tex]f(x)=x^3[/tex] over the line [tex]y=x[/tex]?

A. Multiply [tex]f(x)[/tex] by -1
B. Switch the variables [tex]x[/tex] and [tex]y[/tex] in the equation
C. Multiply [tex]f(y)[/tex] by -1
D. Substitute [tex]-x[/tex] for [tex]x[/tex] and simplify [tex]f(-x)[/tex]



Answer :

To reflect a function [tex]\( f(x) \)[/tex] over the line [tex]\( y = x \)[/tex], you need to switch the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the equation of the function.

Given the function [tex]\( f(x) = x^3 \)[/tex], follow these steps:

1. Replace [tex]\( f(x) \)[/tex] with [tex]\( y \)[/tex] to write the function in terms of [tex]\( y \)[/tex]:
[tex]\[ y = x^3 \][/tex]

2. Switch the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = y^3 \][/tex]

3. Solve for [tex]\( y \)[/tex]:
[tex]\[ y = \sqrt[3]{x} \text{ or } y = x^{1/3} \][/tex]

Therefore, the rule that should be applied to reflect [tex]\( f(x) = x^3 \)[/tex] over the line [tex]\( y = x \)[/tex] involves switching the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the equation.

The correct answer is:
B. Switch the variables [tex]\( x \)[/tex] and [tex]\( y \)[/tex] in the equation