Suppose [tex]\sin (x) = -\frac{3}{5}[/tex] and [tex]\cos (x) \ \textless \ 0[/tex]. What is the value of [tex]\cos (2x)[/tex]?

A. [tex]-\frac{16}{25}[/tex]
B. [tex]-\frac{7}{25}[/tex]
C. [tex]\frac{7}{25}[/tex]
D. [tex]\frac{16}{25}[/tex]



Answer :

Sure, let’s solve the given question step by step.

Given:
[tex]\[ \sin(x) = -\frac{3}{5} \][/tex]
and
[tex]\[ \cos(x) < 0 \][/tex]

First, we'll use the Pythagorean identity to find [tex]\(\cos(x)\)[/tex]. The Pythagorean identity is:
[tex]\[ \sin^2(x) + \cos^2(x) = 1 \][/tex]

Substitute the given [tex]\(\sin(x)\)[/tex] value into the identity:
[tex]\[ \left(-\frac{3}{5}\right)^2 + \cos^2(x) = 1 \][/tex]
[tex]\[ \frac{9}{25} + \cos^2(x) = 1 \][/tex]

Solving for [tex]\(\cos^2(x)\)[/tex]:
[tex]\[ \cos^2(x) = 1 - \frac{9}{25} \][/tex]
[tex]\[ \cos^2(x) = \frac{25}{25} - \frac{9}{25} \][/tex]
[tex]\[ \cos^2(x) = \frac{16}{25} \][/tex]

Since [tex]\(\cos(x) < 0\)[/tex], we take the negative square root:
[tex]\[ \cos(x) = -\sqrt{\frac{16}{25}} = -\frac{4}{5} \][/tex]

Next, we'll use the double-angle formula for cosine:
[tex]\[ \cos(2x) = \cos^2(x) - \sin^2(x) \][/tex]

Substituting the known values of [tex]\(\cos(x)\)[/tex] and [tex]\(\sin(x)\)[/tex]:
[tex]\[ \cos(2x) = \left(-\frac{4}{5}\right)^2 - \left(-\frac{3}{5}\right)^2 \][/tex]
[tex]\[ \cos(2x) = \frac{16}{25} - \frac{9}{25} \][/tex]
[tex]\[ \cos(2x) = \frac{16}{25} - \frac{9}{25} = \frac{7}{25} \][/tex]

Therefore, the value of [tex]\(\cos(2x)\)[/tex] is:
[tex]\[ \boxed{\frac{7}{25}} \][/tex]