Type the correct answer in the box.

Given:
[tex]\[4 Na + O_2 \rightarrow 2 Na_2O\][/tex]

In this chemical reaction, how many moles of [tex]\( Na_2O \)[/tex] will be produced if 2.90 moles of [tex]\( Na \)[/tex] react completely?
Express your answer to three significant figures.

There will be [tex]\(\square\)[/tex] moles of [tex]\( Na_2O \)[/tex].



Answer :

To find out how many moles of [tex]\( \text{Na}_2\text{O} \)[/tex] will be produced from the reaction of 2.90 moles of [tex]\( \text{Na} \)[/tex], we can use the stoichiometry of the balanced chemical equation:

[tex]\[ 4 \text{Na} + \text{O}_2 \rightarrow 2 \text{Na}_2\text{O} \][/tex]

From the balanced equation, we can see that 4 moles of [tex]\( \text{Na} \)[/tex] produce 2 moles of [tex]\( \text{Na}_2\text{O} \)[/tex]. This gives us a molar ratio of:

[tex]\[ 4 \text{Na} : 2 \text{Na}_2\text{O} \][/tex]

We can simplify this ratio to:

[tex]\[ 2 \text{Na} : 1 \text{Na}_2\text{O} \][/tex]

This means 2 moles of [tex]\( \text{Na} \)[/tex] produce 1 mole of [tex]\( \text{Na}_2\text{O} \)[/tex].

Given that we have 2.90 moles of [tex]\( \text{Na} \)[/tex], we can use the ratio to find the moles of [tex]\( \text{Na}_2\text{O} \)[/tex]:

[tex]\[ \frac{2.90 \text{ moles Na}}{2} = 1.45 \text{ moles Na}_2\text{O} \][/tex]

Therefore, there will be [tex]\( 1.45 \)[/tex] moles of [tex]\( \text{Na}_2\text{O} \)[/tex] produced, rounded to three significant figures.

There will be [tex]\( 1.45 \)[/tex] moles of [tex]\( \text{Na}_2\text{O} \)[/tex].