Function Operations

Given the functions:
[tex]\[
\begin{array}{l}
f(x)=8x \\
g(x)=2x-2 \\
h(x)=-6x^2+14x-8
\end{array}
\][/tex]

Determine each of the following. Give your answers as simplified expressions written in descending order.

A. [tex]\( f(x) + g(x) \)[/tex]

B. [tex]\( f(x) \cdot h(x) \)[/tex]

C. [tex]\( g(x) - h(x) \)[/tex]

D. [tex]\( \frac{h(x)}{f(x)} \)[/tex]



Answer :

Alright, let's break this down step by step by evaluating and simplifying each of the given functions:

### Given Functions:
1. [tex]\( f(x) = 8x \)[/tex]
2. [tex]\( g(x) = 2x - 2 \)[/tex]
3. [tex]\( h(x) = -6x^2 + 14x - 8 \)[/tex]

### Simplified Expressions:
Let's determine each function based on the information provided:

#### 1. [tex]\( f(x) = 8x \)[/tex]
This is a linear function where the coefficient of [tex]\( x \)[/tex] is 8, meaning that for any input [tex]\( x \)[/tex], the output is just 8 times [tex]\( x \)[/tex].

#### 2. [tex]\( g(x) = 2x - 2 \)[/tex]
This is another linear function in standard form [tex]\( g(x) = mx + b \)[/tex], where the coefficient of [tex]\( x \)[/tex] (slope) is 2 and the y-intercept is -2.

#### 3. [tex]\( h(x) = -6x^2 + 14x - 8 \)[/tex]
This is a quadratic function in the standard form [tex]\( h(x) = ax^2 + bx + c \)[/tex] where:
- The coefficient [tex]\( a = -6 \)[/tex]
- The coefficient [tex]\( b = 14 \)[/tex]
- The constant term [tex]\( c = -8 \)[/tex]

These expressions are already simplified and written in descending order of powers of [tex]\( x \)[/tex].

### Summary of Simplified Expressions:
1. [tex]\( f(x) = 8x \)[/tex]
2. [tex]\( g(x) = 2x - 2 \)[/tex]
3. [tex]\( h(x) = -6x^2 + 14x - 8 \)[/tex]

These are the simplest forms of the given functions:

- For [tex]\( f(x) \)[/tex], it is simply [tex]\( 8x \)[/tex].
- For [tex]\( g(x) \)[/tex], it is [tex]\( 2x - 2 \)[/tex].
- For [tex]\( h(x) \)[/tex], it is [tex]\( -6x^2 + 14x - 8 \)[/tex].

I hope this detailed explanation clarifies how to interpret and simplify these functions!