noorib
Answered

Find the solution of the differential equation

[tex]\[ r''(t) = \left\langle e^{6t-6}, t^2-1, 1 \right\rangle \][/tex]

with the initial conditions

[tex]\[ r(1) = \langle 0, 0, 11 \rangle, \quad r'(1) = \langle 7, 0, 0 \rangle. \][/tex]

(Use symbolic notation and fractions where needed. Give your answer in vector form.)



Answer :

To solve the differential equation [tex]\( \mathbf{r}''(t) = \left\langle e^{6t-6}, t^2 - 1, 1 \right\rangle \)[/tex] with the given initial conditions [tex]\( \mathbf{r}(1) = \langle 0, 0, 11 \rangle \)[/tex] and [tex]\( \mathbf{r}'(1) = \langle 7, 0, 0 \rangle \)[/tex], follow these steps:

1. Integrate [tex]\( \mathbf{r}''(t) \)[/tex] with respect to [tex]\( t \)[/tex] to find [tex]\( \mathbf{r}'(t) \)[/tex]:

Given:
[tex]\[ \mathbf{r}''(t) = \left\langle e^{6t - 6}, t^2 - 1, 1 \right\rangle \][/tex]

Integrate each component with respect to [tex]\( t \)[/tex]:
[tex]\[ r''_1(t) = e^{6t - 6} \implies r'_1(t) = \int e^{6t - 6} \, dt = \frac{e^{6t - 6}}{6} + C_1 \][/tex]
[tex]\[ r''_2(t) = t^2 - 1 \implies r'_2(t) = \int (t^2 - 1) \, dt = \frac{t^3}{3} - t + C_2 \][/tex]
[tex]\[ r''_3(t) = 1 \implies r'_3(t) = \int 1 \, dt = t + C_3 \][/tex]

So,
[tex]\[ \mathbf{r}'(t) = \left\langle \frac{e^{6t - 6}}{6} + C_1, \frac{t^3}{3} - t + C_2, t + C_3 \right\rangle \][/tex]

2. Use the initial condition [tex]\( \mathbf{r}'(1) = \langle 7, 0, 0 \rangle \)[/tex] to solve for [tex]\( C_1, C_2, \)[/tex] and [tex]\( C_3 \)[/tex]:

Plug in [tex]\( t = 1 \)[/tex] into [tex]\( \mathbf{r}'(t) \)[/tex]:
[tex]\[ \mathbf{r}'(1) = \left\langle \frac{e^{6 \cdot 1 - 6}}{6} + C_1, \frac{1^3}{3} - 1 + C_2, 1 + C_3 \right\rangle = \langle 7, 0, 0 \rangle \][/tex]

Solving each component:
[tex]\[ \frac{e^0}{6} + C_1 = 7 \implies C_1 = 7 - \frac{1}{6} = \frac{42}{6} - \frac{1}{6} = \frac{41}{6} \][/tex]
[tex]\[ \frac{1}{3} - 1 + C_2 = 0 \implies C_2 = 1 - \frac{1}{3} = \frac{3}{3} - \frac{1}{3} = \frac{2}{3} \][/tex]
[tex]\[ 1 + C_3 = 0 \implies C_3 = -1 \][/tex]

Therefore:
[tex]\[ \mathbf{r}'(t) = \left\langle \frac{e^{6t - 6}}{6} + \frac{41}{6}, \frac{t^3}{3} - t + \frac{2}{3}, t - 1 \right\rangle \][/tex]

3. Integrate [tex]\( \mathbf{r}'(t) \)[/tex] with respect to [tex]\( t \)[/tex] to find [tex]\( \mathbf{r}(t) \)[/tex]:

Integrate each component of [tex]\( \mathbf{r}'(t) \)[/tex]:
[tex]\[ r'_1(t) = \frac{e^{6t - 6}}{6} + \frac{41}{6} \implies r_1(t) = \int \left( \frac{e^{6t - 6}}{6} + \frac{41}{6} \right) \, dt = \frac{e^{6t - 6}}{36} + \frac{41t}{6} + C_4 \][/tex]

[tex]\[ r'_2(t) = \frac{t^3}{3} - t + \frac{2}{3} \implies r_2(t) = \int \left( \frac{t^3}{3} - t + \frac{2}{3} \right) \, dt = \frac{t^4}{12} - \frac{t^2}{2} + \frac{2t}{3} + C_5 \][/tex]

[tex]\[ r'_3(t) = t - 1 \implies r_3(t) = \int (t - 1) \, dt = \frac{t^2}{2} - t + C_6 \][/tex]

Thus:
[tex]\[ \mathbf{r}(t) = \left\langle \frac{e^{6t - 6}}{36} + \frac{41t}{6} + C_4, \frac{t^4}{12} - \frac{t^2}{2} + \frac{2t}{3} + C_5, \frac{t^2}{2} - t + C_6 \right\rangle \][/tex]

4. Use the initial condition [tex]\( \mathbf{r}(1) = \langle 0, 0, 11 \rangle \)[/tex] to solve for [tex]\( C_4, C_5, \)[/tex] and [tex]\( C_6 \)[/tex]:

Plug in [tex]\( t = 1 \)[/tex] into [tex]\( \mathbf{r}(t) \)[/tex]:
[tex]\[ \mathbf{r}(1) = \left\langle \frac{e^0}{36} + \frac{41 \cdot 1}{6} + C_4, \frac{1^4}{12} - \frac{1^2}{2} + \frac{2 \cdot 1}{3} + C_5, \frac{1^2}{2} - 1 + C_6 \right\rangle = \langle 0, 0, 11 \rangle \][/tex]

Solving each component:
[tex]\[ \frac{1}{36} + \frac{41}{6} + C_4 = 0 \implies C_4 = -\frac{41}{6} - \frac{1}{36} = -\frac{246}{36} - \frac{1}{36} = -\frac{247}{36} \][/tex]
[tex]\[ \frac{1}{12} - \frac{1}{2} + \frac{2}{3} + C_5 = 0 \implies C_5 = -\frac{1}{12} + \frac{6}{12} - \frac{2}{12} = -\frac{5}{12} \][/tex]
[tex]\[ \frac{1}{2} - 1 + C_6 = 11 \implies C_6 = 11 - \frac{1}{2} + 1 = \frac{21}{2} \][/tex]

Therefore:
[tex]\[ \mathbf{r}(t) = \left\langle \frac{e^{6t - 6}}{36} + \frac{41t}{6} - \frac{247}{36}, \frac{t^4}{12} - \frac{t^2}{2} + \frac{2t}{3} - \frac{5}{12}, \frac{t^2}{2} - t + \frac{21}{2} \right\rangle \][/tex]

Putting everything together, the solution is:
[tex]\[ \mathbf{r}(t) = \left\langle 7t + \frac{e^{6t-6}}{36}, \frac{t^4}{12} - \frac{t^2}{2}, \frac{t^2}{2} + 11 \right\rangle \][/tex]
and the position vector at [tex]\( t = 1 \)[/tex] is:
[tex]\[ \mathbf{r}(1) = \left\langle \frac{253}{36}, -\frac{5}{12}, \frac{23}{2} \right\rangle \][/tex]