Write the function whose graph is the graph of [tex]$y=3 \sqrt[3]{x}$[/tex] but is reflected about the [tex][tex]$x$[/tex]-axis[/tex].

The function is [tex]$y=$ -3 \sqrt[3]{x}$[/tex]
(Type an exact answer, using radicals as needed.)



Answer :

To solve the problem of finding the function whose graph is a reflection of [tex]\(y = 3 \sqrt[3]{x}\)[/tex] about the [tex]\(x\)[/tex]-axis, let's proceed step-by-step:

1. Understanding the Original Function:
The original function given is [tex]\(y = 3 \sqrt[3]{x}\)[/tex]. Here, [tex]\(\sqrt[3]{x}\)[/tex] represents the cube root of [tex]\(x\)[/tex].

2. Reflection about the [tex]\(x\)[/tex]-Axis:
Reflecting a function about the [tex]\(x\)[/tex]-axis involves changing the sign of the [tex]\(y\)[/tex]-values. This can be done by multiplying the function by [tex]\(-1\)[/tex].

3. Applying the Reflection:
To reflect [tex]\(y = 3 \sqrt[3]{x}\)[/tex] about the [tex]\(x\)[/tex]-axis, we need to multiply the entire function by [tex]\(-1\)[/tex]:
[tex]\[ y = -1 \cdot (3 \sqrt[3]{x}) \][/tex]

4. Simplifying the Expression:
Simplify the expression obtained:
[tex]\[ y = -3 \sqrt[3]{x} \][/tex]

Therefore, the function whose graph is the graph of [tex]\(y = 3 \sqrt[3]{x}\)[/tex] but reflected about the [tex]\(x\)[/tex]-axis is:
[tex]\[ y = -3 \sqrt[3]{x} \][/tex]