If [tex]\((7,0)\)[/tex] is a point on the graph of [tex]\(y=f(x)\)[/tex], which of the following must be on the graph of [tex]\(y=-f(x)\)[/tex]?

Choose the correct answer below.
A. [tex]\((7,0)\)[/tex]
B. [tex]\((0,-7)\)[/tex]
C. [tex]\((-7,0)\)[/tex]
D. [tex]\((0,7)\)[/tex]



Answer :

To answer this question, we need to understand how the transformation from [tex]\( y = f(x) \)[/tex] to [tex]\( y = -f(x) \)[/tex] affects the coordinates of the points on the graph. Specifically, we need to determine what happens to the point [tex]\((7, 0)\)[/tex].

The original point given is [tex]\((7,0)\)[/tex], meaning that when [tex]\( x = 7 \)[/tex], [tex]\( y = f(7) = 0 \)[/tex].

When we transform the function to [tex]\( y = -f(x) \)[/tex], the [tex]\( y \)[/tex]-coordinate of each point on the graph of [tex]\( y = f(x) \)[/tex] is negated.

To find the corresponding point on the graph of [tex]\( y = -f(x) \)[/tex] for the given point [tex]\((7,0)\)[/tex]:

1. Identify the [tex]\( x \)[/tex]-coordinate. It remains unchanged, so it is still [tex]\( 7 \)[/tex].
2. Negate the [tex]\( y \)[/tex]-coordinate. The original [tex]\( y \)[/tex]-coordinate is [tex]\( 0 \)[/tex], so negating it gives us [tex]\( -0 \)[/tex].

Mathematically, [tex]\( -0 \)[/tex] is simply [tex]\( 0 \)[/tex].

So, the point [tex]\((7, 0)\)[/tex] on the graph of [tex]\( y = f(x) \)[/tex] corresponds to the point [tex]\((7, 0)\)[/tex] on the graph of [tex]\( y = -f(x) \)[/tex].

Therefore, the correct answer is:
[tex]\[ (7,0) \][/tex]

Other Questions