To determine the mass of the object, we can use the formula for density:
[tex]\[ d = \frac{m}{v} \][/tex]
where [tex]\( d \)[/tex] is the density, [tex]\( m \)[/tex] is the mass, and [tex]\( v \)[/tex] is the volume. We need to solve for [tex]\( m \)[/tex] (mass), so we can rearrange the formula to:
[tex]\[ m = d \cdot v \][/tex]
Given:
- The density [tex]\( d \)[/tex] is [tex]\( 1.3 \, \text{g/cm}^3 \)[/tex]
- The volume [tex]\( v \)[/tex] is [tex]\( 2 \, \text{cm}^3 \)[/tex]
Now, we can substitute these values into the formula:
[tex]\[ m = 1.3 \, \text{g/cm}^3 \times 2 \, \text{cm}^3 \][/tex]
[tex]\[ m = 2.6 \, \text{g} \][/tex]
So, the mass of the object is:
[tex]\[ \boxed{2.6 \, \text{g}} \][/tex]
Therefore, the correct answer is:
B. 2.6 g