Answer :
To solve how long it will take for a car traveling at a speed of [tex]\(17 \, \text{m/s}\)[/tex] to cover a distance of [tex]\(20 \, \text{m}\)[/tex], we can use the equation for time:
[tex]\[ t = \frac{d}{s} \][/tex]
where [tex]\(t\)[/tex] is time, [tex]\(d\)[/tex] is distance, and [tex]\(s\)[/tex] is speed.
1. Identify the given values:
- Distance, [tex]\(d\)[/tex], is [tex]\(20 \, \text{m}\)[/tex].
- Speed, [tex]\(s\)[/tex], is [tex]\(17 \, \text{m/s}\)[/tex].
2. Substitute the values into the equation:
[tex]\[ t = \frac{20 \, \text{m}}{17 \, \text{m/s}} \][/tex]
3. Calculate the time:
[tex]\[ t = 1.1764705882352942 \, \text{s} \][/tex]
So the time taken is approximately [tex]\(1.176 \, \text{s}\)[/tex].
4. Compare the calculated time with the given choices:
- Choice A: [tex]\(1.2 \, \text{s}\)[/tex]
- Choice B: [tex]\(3 \, \text{s}\)[/tex]
- Choice C: [tex]\(2.9 \, \text{s}\)[/tex]
- Choice D: [tex]\(37 \, \text{s}\)[/tex]
Among these choices, the closest one to [tex]\(1.176 \, \text{s}\)[/tex] is [tex]\(1.2 \, \text{s}\)[/tex].
Therefore, the correct answer is:
A. 1.2 s
[tex]\[ t = \frac{d}{s} \][/tex]
where [tex]\(t\)[/tex] is time, [tex]\(d\)[/tex] is distance, and [tex]\(s\)[/tex] is speed.
1. Identify the given values:
- Distance, [tex]\(d\)[/tex], is [tex]\(20 \, \text{m}\)[/tex].
- Speed, [tex]\(s\)[/tex], is [tex]\(17 \, \text{m/s}\)[/tex].
2. Substitute the values into the equation:
[tex]\[ t = \frac{20 \, \text{m}}{17 \, \text{m/s}} \][/tex]
3. Calculate the time:
[tex]\[ t = 1.1764705882352942 \, \text{s} \][/tex]
So the time taken is approximately [tex]\(1.176 \, \text{s}\)[/tex].
4. Compare the calculated time with the given choices:
- Choice A: [tex]\(1.2 \, \text{s}\)[/tex]
- Choice B: [tex]\(3 \, \text{s}\)[/tex]
- Choice C: [tex]\(2.9 \, \text{s}\)[/tex]
- Choice D: [tex]\(37 \, \text{s}\)[/tex]
Among these choices, the closest one to [tex]\(1.176 \, \text{s}\)[/tex] is [tex]\(1.2 \, \text{s}\)[/tex].
Therefore, the correct answer is:
A. 1.2 s