The equation for distance is [tex]d = st[/tex]. If a car has a speed of [tex]17 \, \text{m/s}[/tex], how long will it take to go [tex]20 \, \text{m}[/tex]?

A. 1.2 s
B. 3 s
C. 2.9 s
D. 37 s



Answer :

To solve how long it will take for a car traveling at a speed of [tex]\(17 \, \text{m/s}\)[/tex] to cover a distance of [tex]\(20 \, \text{m}\)[/tex], we can use the equation for time:

[tex]\[ t = \frac{d}{s} \][/tex]

where [tex]\(t\)[/tex] is time, [tex]\(d\)[/tex] is distance, and [tex]\(s\)[/tex] is speed.

1. Identify the given values:
- Distance, [tex]\(d\)[/tex], is [tex]\(20 \, \text{m}\)[/tex].
- Speed, [tex]\(s\)[/tex], is [tex]\(17 \, \text{m/s}\)[/tex].

2. Substitute the values into the equation:

[tex]\[ t = \frac{20 \, \text{m}}{17 \, \text{m/s}} \][/tex]

3. Calculate the time:

[tex]\[ t = 1.1764705882352942 \, \text{s} \][/tex]

So the time taken is approximately [tex]\(1.176 \, \text{s}\)[/tex].

4. Compare the calculated time with the given choices:
- Choice A: [tex]\(1.2 \, \text{s}\)[/tex]
- Choice B: [tex]\(3 \, \text{s}\)[/tex]
- Choice C: [tex]\(2.9 \, \text{s}\)[/tex]
- Choice D: [tex]\(37 \, \text{s}\)[/tex]

Among these choices, the closest one to [tex]\(1.176 \, \text{s}\)[/tex] is [tex]\(1.2 \, \text{s}\)[/tex].

Therefore, the correct answer is:
A. 1.2 s