Answer :
To solve the given system of linear equations:
[tex]\[ \begin{aligned} 4x + 8y = 7, \\ 2x - 3y = 0, \end{aligned} \][/tex]
we can represent it in matrix form as:
[tex]\[ A \mathbf{x} = \mathbf{B}, \][/tex]
where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the column vector of variables, and [tex]\(\mathbf{B}\)[/tex] is the column vector of constants.
[tex]\[ A = \begin{pmatrix} 4 & 8 \\ 2 & -3 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}. \][/tex]
To solve for [tex]\(\mathbf{x}\)[/tex], we need to find the inverse of matrix [tex]\(A\)[/tex] (denoted as [tex]\(A^{-1}\)[/tex]) and multiply it with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B}. \][/tex]
So let's check which given option matches the correct representation of [tex]\( A^{-1} \mathbf{B} \)[/tex]:
Given options:
a.
[tex]\[ M = \frac{1}{4} \begin{pmatrix} 3 & 8 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} 0 \\ 7 \end{pmatrix} \][/tex]
b.
[tex]\[ M = \frac{-1}{28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \][/tex]
c.
[tex]\[ M = \frac{1}{28} \begin{pmatrix} 3 & -2 \\ -8 & -4 \end{pmatrix} \begin{pmatrix} -7 \\ 0 \end{pmatrix} \][/tex]
d.
[tex]\[ M = \frac{1}{4} \begin{pmatrix} 4 & 2 \\ 8 & -3 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \][/tex]
To determine the correct choice, we apply the steps involved in finding the inverse of matrix [tex]\(A\)[/tex]:
The inverse of a 2x2 matrix [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \][/tex]
For our matrix [tex]\(A = \begin{pmatrix} 4 & 8 \\ 2 & -3 \end{pmatrix}\)[/tex]:
Determinant: [tex]\( \text{det}(A) = (4 \times -3) - (8 \times 2) = -12 - 16 = -28 \)[/tex].
So,
[tex]\[ A^{-1} = \frac{1}{-28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix}. \][/tex]
Now multiply [tex]\(A^{-1}\)[/tex] with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A^{-1} \mathbf{B} = \frac{1}{-28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix}. \][/tex]
This matches option b:
[tex]\[ M = \frac{-1}{28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix}. \][/tex]
Thus, the correct option is:
[tex]\[ \boxed{b} \][/tex]
[tex]\[ \begin{aligned} 4x + 8y = 7, \\ 2x - 3y = 0, \end{aligned} \][/tex]
we can represent it in matrix form as:
[tex]\[ A \mathbf{x} = \mathbf{B}, \][/tex]
where [tex]\(A\)[/tex] is the coefficient matrix, [tex]\(\mathbf{x}\)[/tex] is the column vector of variables, and [tex]\(\mathbf{B}\)[/tex] is the column vector of constants.
[tex]\[ A = \begin{pmatrix} 4 & 8 \\ 2 & -3 \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} 7 \\ 0 \end{pmatrix}. \][/tex]
To solve for [tex]\(\mathbf{x}\)[/tex], we need to find the inverse of matrix [tex]\(A\)[/tex] (denoted as [tex]\(A^{-1}\)[/tex]) and multiply it with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ \mathbf{x} = A^{-1} \mathbf{B}. \][/tex]
So let's check which given option matches the correct representation of [tex]\( A^{-1} \mathbf{B} \)[/tex]:
Given options:
a.
[tex]\[ M = \frac{1}{4} \begin{pmatrix} 3 & 8 \\ 2 & -4 \end{pmatrix} \begin{pmatrix} 0 \\ 7 \end{pmatrix} \][/tex]
b.
[tex]\[ M = \frac{-1}{28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \][/tex]
c.
[tex]\[ M = \frac{1}{28} \begin{pmatrix} 3 & -2 \\ -8 & -4 \end{pmatrix} \begin{pmatrix} -7 \\ 0 \end{pmatrix} \][/tex]
d.
[tex]\[ M = \frac{1}{4} \begin{pmatrix} 4 & 2 \\ 8 & -3 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix} \][/tex]
To determine the correct choice, we apply the steps involved in finding the inverse of matrix [tex]\(A\)[/tex]:
The inverse of a 2x2 matrix [tex]\(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex] is:
[tex]\[ A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}. \][/tex]
For our matrix [tex]\(A = \begin{pmatrix} 4 & 8 \\ 2 & -3 \end{pmatrix}\)[/tex]:
Determinant: [tex]\( \text{det}(A) = (4 \times -3) - (8 \times 2) = -12 - 16 = -28 \)[/tex].
So,
[tex]\[ A^{-1} = \frac{1}{-28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix}. \][/tex]
Now multiply [tex]\(A^{-1}\)[/tex] with [tex]\(\mathbf{B}\)[/tex]:
[tex]\[ A^{-1} \mathbf{B} = \frac{1}{-28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix}. \][/tex]
This matches option b:
[tex]\[ M = \frac{-1}{28} \begin{pmatrix} -3 & -8 \\ -2 & 4 \end{pmatrix} \begin{pmatrix} 7 \\ 0 \end{pmatrix}. \][/tex]
Thus, the correct option is:
[tex]\[ \boxed{b} \][/tex]