If [tex]\( A - B = C \)[/tex], then use the matrices below to find the element [tex]\( c_{1,2} \)[/tex].

[tex]\[
A = \begin{bmatrix}
2 & -3 \\
-1 & 4
\end{bmatrix}
\quad
B = \begin{bmatrix}
4 & -5 \\
1 & 3
\end{bmatrix}
\][/tex]

Answer:



Answer :

To solve for the matrix [tex]\(C\)[/tex] where [tex]\(C = A - B\)[/tex], we will perform element-wise subtraction of matrix [tex]\(B\)[/tex] from matrix [tex]\(A\)[/tex].

Given:
[tex]\[ A = \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} \][/tex]
[tex]\[ B = \begin{pmatrix} 4 & -5 \\ 1 & 3 \end{pmatrix} \][/tex]

Step-by-Step Solution:

1. Subtract the corresponding elements of matrix [tex]\(B\)[/tex] from matrix [tex]\(A\)[/tex] to find matrix [tex]\(C\)[/tex]:

[tex]\[ C = A - B = \begin{pmatrix} 2 & -3 \\ -1 & 4 \end{pmatrix} - \begin{pmatrix} 4 & -5 \\ 1 & 3 \end{pmatrix} \][/tex]

2. Perform the element-wise subtraction:

- For element [tex]\(C_{1,1}\)[/tex]:
[tex]\[ 2 - 4 = -2 \][/tex]

- For element [tex]\(C_{1,2}\)[/tex]:
[tex]\[ -3 - (-5) = -3 + 5 = 2 \][/tex]

- For element [tex]\(C_{2,1}\)[/tex]:
[tex]\[ -1 - 1 = -2 \][/tex]

- For element [tex]\(C_{2,2}\)[/tex]:
[tex]\[ 4 - 3 = 1 \][/tex]

3. Thus, the resulting matrix [tex]\(C\)[/tex] is:
[tex]\[ C = \begin{pmatrix} -2 & 2 \\ -2 & 1 \end{pmatrix} \][/tex]

4. To find the element [tex]\(c_{1,2}\)[/tex], which refers to the element in the first row and second column of matrix [tex]\(C\)[/tex]:

[tex]\[ c_{1,2} = 2 \][/tex]

Therefore, the element [tex]\(c_{1,2}\)[/tex] is [tex]\(2\)[/tex].