Given the matrix:
[tex]\[
\left[\begin{array}{cc}
-4 & -6 \\
2 & 3
\end{array}\right]
\][/tex]

Which matrix below represents the inverse of the matrix above?

A. [tex]\[
\left[\begin{array}{cc}
3 & 6 \\
2 & -4
\end{array}\right]
\][/tex]

B. [tex]\[
\left[\begin{array}{cc}
-\frac{1}{8} & -\frac{1}{4} \\
-\frac{1}{12} & \frac{1}{6}
\end{array}\right]
\][/tex]

C. [tex]\[
\left[\begin{array}{cc}
-8 & -4 \\
-12 & 6
\end{array}\right]
\][/tex]

D. Does Not Exist

Answer: [tex]$\square$[/tex]



Answer :

Given the matrix:
[tex]\[ \begin{pmatrix} -4 & -6 \\ 2 & 3 \end{pmatrix} \][/tex]

We are seeking to determine its inverse and compare it with the given options. To find the inverse of a [tex]\(2 \times 2\)[/tex] matrix [tex]\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)[/tex], the inverse (if it exists) is given by:
[tex]\[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \][/tex]
provided that [tex]\(ad - bc \neq 0\)[/tex]. For our matrix, [tex]\(a = -4\)[/tex], [tex]\(b = -6\)[/tex], [tex]\(c = 2\)[/tex], and [tex]\(d = 3\)[/tex].

First, we compute the determinant:
[tex]\[ ad - bc = (-4)(3) - (-6)(2) = -12 + 12 = 0 \][/tex]

Because the determinant is zero, the matrix does not have an inverse. Consequently, among the given options, the correct response must be that the inverse does not exist.

Answer: [tex]\(\boxed{D \text{. Does Not Exist}}\)[/tex]