Answer :
Let's solve the given system of equations:
[tex]\[ \left\{ \begin{array}{l} \frac{x}{2} = \frac{y}{3} = \frac{2}{4} \\ 2x - 3y - 4z = -42 \end{array} \right. \][/tex]
First, we can simplify the fraction on the right-hand side.
[tex]\[ \frac{2}{4} = \frac{1}{2} \][/tex]
So, we have:
[tex]\[ \frac{x}{2} = \frac{y}{3} = \frac{1}{2} \][/tex]
From this, we can derive:
[tex]\[ \frac{x}{2} = \frac{1}{2} \][/tex]
Multiplying both sides by 2:
[tex]\[ x = 1 \][/tex]
Similarly, from:
[tex]\[ \frac{y}{3} = \frac{1}{2} \][/tex]
Multiplying both sides by 3:
[tex]\[ y = \frac{3}{2} = 1.5 \][/tex]
Now, we substitute [tex]\(x = 1\)[/tex] and [tex]\(y = 1.5\)[/tex] into the second equation:
[tex]\[ 2x - 3y - 4z = -42 \][/tex]
Substituting [tex]\(x = 1\)[/tex] and [tex]\(y = 1.5\)[/tex]:
[tex]\[ 2(1) - 3(1.5) - 4z = -42 \][/tex]
Simplifying within the equation:
[tex]\[ 2 - 4.5 - 4z = -42 \][/tex]
[tex]\[ -2.5 - 4z = -42 \][/tex]
Next, isolate [tex]\(z\)[/tex] by first adding 2.5 to both sides:
[tex]\[ -4z = -42 + 2.5 \][/tex]
[tex]\[ -4z = -39.5 \][/tex]
Now, divide both sides by -4:
[tex]\[ z = \frac{-39.5}{-4} \][/tex]
[tex]\[ z = 9.875 \][/tex]
So, the solutions to the system of equations are:
[tex]\[ x = 1.0000,\quad y = 1.5000,\quad z = 9.8750 \][/tex]
[tex]\[ \left\{ \begin{array}{l} \frac{x}{2} = \frac{y}{3} = \frac{2}{4} \\ 2x - 3y - 4z = -42 \end{array} \right. \][/tex]
First, we can simplify the fraction on the right-hand side.
[tex]\[ \frac{2}{4} = \frac{1}{2} \][/tex]
So, we have:
[tex]\[ \frac{x}{2} = \frac{y}{3} = \frac{1}{2} \][/tex]
From this, we can derive:
[tex]\[ \frac{x}{2} = \frac{1}{2} \][/tex]
Multiplying both sides by 2:
[tex]\[ x = 1 \][/tex]
Similarly, from:
[tex]\[ \frac{y}{3} = \frac{1}{2} \][/tex]
Multiplying both sides by 3:
[tex]\[ y = \frac{3}{2} = 1.5 \][/tex]
Now, we substitute [tex]\(x = 1\)[/tex] and [tex]\(y = 1.5\)[/tex] into the second equation:
[tex]\[ 2x - 3y - 4z = -42 \][/tex]
Substituting [tex]\(x = 1\)[/tex] and [tex]\(y = 1.5\)[/tex]:
[tex]\[ 2(1) - 3(1.5) - 4z = -42 \][/tex]
Simplifying within the equation:
[tex]\[ 2 - 4.5 - 4z = -42 \][/tex]
[tex]\[ -2.5 - 4z = -42 \][/tex]
Next, isolate [tex]\(z\)[/tex] by first adding 2.5 to both sides:
[tex]\[ -4z = -42 + 2.5 \][/tex]
[tex]\[ -4z = -39.5 \][/tex]
Now, divide both sides by -4:
[tex]\[ z = \frac{-39.5}{-4} \][/tex]
[tex]\[ z = 9.875 \][/tex]
So, the solutions to the system of equations are:
[tex]\[ x = 1.0000,\quad y = 1.5000,\quad z = 9.8750 \][/tex]